login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of genus 4 rooted hypermaps with n darts.
3

%I #20 Aug 23 2022 14:06:00

%S 8064,579744,23235300,684173164,16497874380,344901105444,

%T 6471056247920,111480953909328,1792031518697232,27197316623478960,

%U 393207192141924744,5453210050430783640,72949244341257096792,945523594111460363208,11918067649004916470640,146538779626167833263888,1762112462707129510538640

%N Number of genus 4 rooted hypermaps with n darts.

%C Column k = 4 of A321710.

%C a(n) = 0 for n < 9. - _N. J. A. Sloane_, Dec 24 2018

%H Gheorghe Coserea, <a href="/A318104/b318104.txt">Table of n, a(n) for n = 9..109</a>

%H Mednykh, A.; Nedela, R. <a href="https://doi.org/10.1007/s10958-017-3555-5">Recent progress in enumeration of hypermaps</a>, J. Math. Sci., New York 226, No. 5, 635-654 (2017) and Zap. Nauchn. Semin. POMI 446, 139-164 (2016), table 6

%H Timothy R. Walsh, <a href="http://www.info2.uqam.ca/~walsh_t/papers/GENERATING NONISOMORPHIC.pdf">Space-efficient generation of nonisomorphic maps and hypermaps</a>

%H T. R. Walsh, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Walsh/walsh3.html">Space-Efficient Generation of Nonisomorphic Maps and Hypermaps</a>, J. Int. Seq. 18 (2015) # 15.4.3.

%H Peter Zograf, <a href="https://arxiv.org/abs/1312.2538">Enumeration of Grothendieck's Dessins and KP Hierarchy</a>, arXiv:1312.2538 [math.CO], 2014.

%F G.f.: -y*(y - 1)^9*(262*y^14 - 4716*y^13 + 78327*y^12 - 569134*y^11 + 3266910*y^10 - 12675726*y^9 + 37548087*y^8 - 82680972*y^7 + 137674842*y^6 - 170295272*y^5 + 152918277*y^4 - 94811622*y^3 + 37127810*y^2 - 7566846*y + 505869)/(4*(y - 2)^17*(y + 1)^13), where y = C(2*x), C being the g.f. for A000108.

%e A(x) = 8064*x^9 + 579744*x^10 + 23235300*x^11 + 684173164*x^12 + ...

%t y = (1 - Sqrt[1 - 8 x])/(4 x);

%t gf = -y (y-1)^9 (262 y^14 - 4716 y^13 + 78327 y^12 - 569134 y^11 + 3266910 y^10 - 12675726 y^9 + 37548087 y^8 - 82680972 y^7 + 137674842 y^6 - 170295272 y^5 + 152918277 y^4 - 94811622 y^3 + 37127810 y^2 - 7566846 y + 505869)/(4 (y-2)^17 (y+1)^13);

%t Drop[CoefficientList[gf + O[x]^26, x], 9] (* _Jean-François Alcover_, Feb 07 2019, from PARI *)

%o (PARI)

%o seq(N) = {

%o my(x='x+O('x^(N+2)), y=(1-sqrt(1-8*x))/(4*x));

%o Vec(-y*(y - 1)^9*(262*y^14 - 4716*y^13 + 78327*y^12 - 569134*y^11 + 3266910*y^10 - 12675726*y^9 + 37548087*y^8 - 82680972*y^7 + 137674842*y^6 - 170295272*y^5 + 152918277*y^4 - 94811622*y^3 + 37127810*y^2 - 7566846*y + 505869)/(4*(y - 2)^17*(y + 1)^13));

%o };

%o seq(17)

%Y Cf. A000257, A118093, A214817, A214818, A321710.

%K nonn

%O 9,1

%A _Gheorghe Coserea_, Nov 12 2018