login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318107
Triangle read by rows: T(n,k) = (3*n - 2*k)!/((n-k)!^3*k!).
4
1, 6, 1, 90, 24, 1, 1680, 630, 60, 1, 34650, 16800, 2520, 120, 1, 756756, 450450, 92400, 7560, 210, 1, 17153136, 12108096, 3153150, 369600, 18900, 336, 1, 399072960, 325909584, 102918816, 15765750, 1201200, 41580, 504, 1, 9465511770, 8779605120, 3259095840, 617512896, 63063000, 3363360, 83160, 720, 1
OFFSET
0,2
COMMENTS
Diagonal of rational function R(x,y,z,t) = 1/(1 - (x + y + z + t*x*y*z)) with respect to x,y,z, i.e., T(n,k) = [(xyz)^n*t^k] R(x,y,z,t).
Annihilating differential operator: x*(2*t*x + 1)*((t*x - 1)^3 + 27*x)*Dx^2 + (6*t^4*x^4 - 8*t^3*x^3 - 3*t*(t - 18)*x^2 + 6*(t + 9)*x - 1)*Dx + (t*x - 1)*(t*(2*t^2*x^2 + 2*t*x - 1) - 6).
LINKS
Gheorghe Coserea, Rows n=0..100, flattened
FORMULA
Let P_n(t) = Sum_{k=0..n} T(n,k)*t^k. Then A000172(n) = P_n(-4), A318108(n) = P_n(-3), A318109(n) = P_n(-2), A124435(n) = P_n(-1), A006480(n) = P_n(0), A081798(n) = P_n(1).
G.f. y = Sum_{n>=0} P_n(t)*x^n satisfies:
0 = x*(2*t*x + 1)*((t*x - 1)^3 + 27*x)*y'' + (6*t^4*x^4 - 8*t^3*x^3 - 3*t*(t - 18)*x^2 + 6*(t + 9)*x - 1)*y' + (t*x - 1)*(t*(2*t^2*x^2 + 2*t*x - 1) - 6)*y.
EXAMPLE
A(x;t) = 1 + (6 + t)*x + (90 + 24*t + t^2)*x^2 + (1680 + 630*t + 60*t^2 + t^3)*x^3 + ...
Triangle starts:
n\k [0] [1] [2] [3] [4] [5] [6] [7]
[0] 1;
[1] 6, 1;
[2] 90, 24, 1;
[3] 1680, 630, 60, 1;
[4] 34650, 16800, 2520, 120, 1;
[5] 756756, 450450, 92400, 7560, 210, 1;
[6] 17153136, 12108096, 3153150, 369600, 18900, 336, 1;
[7] 399072960, 325909584, 102918816, 15765750, 1201200, 41580, 504, 1;
[8] ...
PROG
(PARI)
T(n, k) = (3*n - 2*k)!/((n-k)!^3*k!);
concat(vector(10, n, vector(n, k, T(n-1, k-1))))
/* test:
P(n, v='t) = subst(Polrev(vector(n+1, k, T(n, k-1)), 't), 't, v);
diag(expr, N=22, var=variables(expr)) = {
my(a = vector(N));
for (k = 1, #var, expr = taylor(expr, var[#var - k + 1], N));
for (n = 1, N, a[n] = expr;
for (k = 1, #var, a[n] = polcoef(a[n], n-1)));
return(a);
};
apply_diffop(p, s) = { \\ apply diffop p (encoded as Pol in Dx) to Ser s
s=intformal(s);
sum(n=0, poldegree(p, 'Dx), s=s'; polcoef(p, n, 'Dx) * s);
};
\\ diagonal property:
x='x; y='y; z='z; t='t;
diag(1/(1 - (x+y+z + t*x*y*z)), 11, [x, y, z]) == vector(11, n, P(n-1))
\\ annihilating diffop:
y = Ser(vector(101, n, P(n-1)), 'x);
p=x*(2*t*x + 1)*((t*x - 1)^3 + 27*x)*Dx^2 + (6*t^4*x^4 - 8*t^3*x^3 - 3*t*(t - 18)*x^2 + 6*(t + 9)*x - 1)*Dx + (t*x - 1)*(t*(2*t^2*x^2 + 2*t*x - 1) - 6);
0 == apply_diffop(p, y)
*/
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gheorghe Coserea, Sep 18 2018
STATUS
approved