Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Sep 20 2018 21:15:02
%S 1,6,1,90,24,1,1680,630,60,1,34650,16800,2520,120,1,756756,450450,
%T 92400,7560,210,1,17153136,12108096,3153150,369600,18900,336,1,
%U 399072960,325909584,102918816,15765750,1201200,41580,504,1,9465511770,8779605120,3259095840,617512896,63063000,3363360,83160,720,1
%N Triangle read by rows: T(n,k) = (3*n - 2*k)!/((n-k)!^3*k!).
%C Diagonal of rational function R(x,y,z,t) = 1/(1 - (x + y + z + t*x*y*z)) with respect to x,y,z, i.e., T(n,k) = [(xyz)^n*t^k] R(x,y,z,t).
%C Annihilating differential operator: x*(2*t*x + 1)*((t*x - 1)^3 + 27*x)*Dx^2 + (6*t^4*x^4 - 8*t^3*x^3 - 3*t*(t - 18)*x^2 + 6*(t + 9)*x - 1)*Dx + (t*x - 1)*(t*(2*t^2*x^2 + 2*t*x - 1) - 6).
%H Gheorghe Coserea, <a href="/A318107/b318107.txt">Rows n=0..100, flattened</a>
%F Let P_n(t) = Sum_{k=0..n} T(n,k)*t^k. Then A000172(n) = P_n(-4), A318108(n) = P_n(-3), A318109(n) = P_n(-2), A124435(n) = P_n(-1), A006480(n) = P_n(0), A081798(n) = P_n(1).
%F G.f. y = Sum_{n>=0} P_n(t)*x^n satisfies:
%F 0 = x*(2*t*x + 1)*((t*x - 1)^3 + 27*x)*y'' + (6*t^4*x^4 - 8*t^3*x^3 - 3*t*(t - 18)*x^2 + 6*(t + 9)*x - 1)*y' + (t*x - 1)*(t*(2*t^2*x^2 + 2*t*x - 1) - 6)*y.
%e A(x;t) = 1 + (6 + t)*x + (90 + 24*t + t^2)*x^2 + (1680 + 630*t + 60*t^2 + t^3)*x^3 + ...
%e Triangle starts:
%e n\k [0] [1] [2] [3] [4] [5] [6] [7]
%e [0] 1;
%e [1] 6, 1;
%e [2] 90, 24, 1;
%e [3] 1680, 630, 60, 1;
%e [4] 34650, 16800, 2520, 120, 1;
%e [5] 756756, 450450, 92400, 7560, 210, 1;
%e [6] 17153136, 12108096, 3153150, 369600, 18900, 336, 1;
%e [7] 399072960, 325909584, 102918816, 15765750, 1201200, 41580, 504, 1;
%e [8] ...
%o (PARI)
%o T(n,k) = (3*n - 2*k)!/((n-k)!^3*k!);
%o concat(vector(10, n, vector(n, k, T(n-1, k-1))))
%o /* test:
%o P(n, v='t) = subst(Polrev(vector(n+1, k, T(n, k-1)), 't), 't, v);
%o diag(expr, N=22, var=variables(expr)) = {
%o my(a = vector(N));
%o for (k = 1, #var, expr = taylor(expr, var[#var - k + 1], N));
%o for (n = 1, N, a[n] = expr;
%o for (k = 1, #var, a[n] = polcoef(a[n], n-1)));
%o return(a);
%o };
%o apply_diffop(p, s) = { \\ apply diffop p (encoded as Pol in Dx) to Ser s
%o s=intformal(s);
%o sum(n=0, poldegree(p, 'Dx), s=s'; polcoef(p, n, 'Dx) * s);
%o };
%o \\ diagonal property:
%o x='x; y='y; z='z; t='t;
%o diag(1/(1 - (x+y+z + t*x*y*z)), 11, [x,y,z]) == vector(11, n, P(n-1))
%o \\ annihilating diffop:
%o y = Ser(vector(101, n, P(n-1)), 'x);
%o p=x*(2*t*x + 1)*((t*x - 1)^3 + 27*x)*Dx^2 + (6*t^4*x^4 - 8*t^3*x^3 - 3*t*(t - 18)*x^2 + 6*(t + 9)*x - 1)*Dx + (t*x - 1)*(t*(2*t^2*x^2 + 2*t*x - 1) - 6);
%o 0 == apply_diffop(p, y)
%o */
%Y Cf. A000172, A006480, A081798, A124435, A318108, A318109.
%K nonn,tabl
%O 0,2
%A _Gheorghe Coserea_, Sep 18 2018