login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124435
Number of effective multiple alignments of three equal-length sequences.
6
1, 5, 67, 1109, 20251, 391355, 7847155, 161476565, 3387271675, 72114452255, 1553475100717, 33786532319435, 740681494769659, 16346552430326123, 362830907979309067, 8093356178498583509, 181311959402343288955, 4077310062938894133623, 91999289732199733092601
OFFSET
0,2
COMMENTS
This counts effective alignments rather than standard alignments, so that for example the following two alignments are equivalent:
-A A-
-T T-
C- -C
See Dress, Morgenstern and Stoye for more information.
LINKS
A. Bostan, S. Boukraa, J.-M. Maillard, and J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, arXiv preprint arXiv:1507.03227 [math-ph], 2015.
A. Dress, B. Morgenstern and J. Stoye, On the number of standard and of effective multiple alignments, Applied Mathematics Letters, Vol. 11, No. 4, 1998, pp. 43-49.
FORMULA
The recurrence is three-dimensional with the order of the three parameters immaterial. That is, a(i,j,k)=a(i,k,j)=a(j,i,k)=a(j,k,i)=a(k,i,j)=a(k,j,i). a(i, j, 0) = (i+j)! / i! / j! a(i, j, k) = a(i-1,j,k) + a(i,j-1,k) + a(i,j,k-1) - a(i-1,j-1,k-1).
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*binomial(n+2*k,n)*binomial(2*k,k). - Wadim Zudilin, Nov 26 2015
Diagonal of 1/(1 - x - y - z + x*y*z). - Mark van Hoeij, Dec 20 2013
G.f.: hypergeom([1/3, 2/3],[1],27*x/(1+x)^3)/(1+x). - Mark van Hoeij, Dec 20 2013
(3*n-1)*(n+1)^2*a(n+1)-(3*n+1)*(24*n^2+8*n-5)*a(n)+(9*n^3-3*n^2-4*n+2)*a(n-1)+(3*n+2)*(n-1)^2*a(n-2)=0. - Robert Israel, Nov 26 2015
0 = (2*x-1)*(x^3+3*x^2-24*x+1)*x*y'' + (6*x^4+8*x^3-57*x^2+48*x-1)*y' + (x+1)*(2*x^2-2*x+5)*y, where y is g.f. - Gheorghe Coserea, Jul 06 2016
From Peter Bala, Mar 16 2023: (Start)
(3*n - 4)*n^2*a(n) = (3*n - 2)*(24*n^2 - 40*n + 11)*a(n-1) - (9*n^3 - 30*n^2 + 29*n - 6)*a(n-2) - (3*n - 1)*(n - 2)^2*a(n-3) with a(0) = 1, a(1) = 5 and a(2) = 67.
Conjecture: the supercongruence a(n*p^r) == a(n*p^(r-1)) (mod p^(2*r)) holds for positive integers n and r and all primes p >= 5. (End)
EXAMPLE
a(1) = 5 because the five alignments are
A-- A- A- A- A
-C- C- -C -C C
--T -T T- -T T
MAPLE
G := series( hypergeom([1/3, 2/3], [1], 27*x/(1+x)^3)/(1+x), x=0, 31);
seq(coeff(G, x, i), i=0..30); # Mark van Hoeij, Dec 20 2013
MATHEMATICA
a[n_] := Sum[(-1)^(n-k) Binomial[n, k] Binomial[n+2k, n] Binomial[2k, k], {k, 0, n}];
Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Sep 18 2018, after Wadim Zudilin *)
PROG
(PARI)
diag(expr, N=22, var=variables(expr)) = {
my(a = vector(N));
for (k = 1, #var, expr = taylor(expr, var[#var - k + 1], N));
for (n = 1, N, a[n] = expr;
for (k = 1, #var, a[n] = polcoef(a[n], n-1)));
return(a);
};
x='x; y='y; z='z; diag(1/(1 - x - y - z + x*y*z), 19)
(PARI) \\ system("wget http://www.jjj.de/pari/hypergeom.gpi");
read("hypergeom.gpi");
N = 20; x = 'x + O('x^N);
Vec(hypergeom([1/3, 2/3], [1], 27*x/(1+x)^3, N)/(1+x)) \\ Gheorghe Coserea, Jul 06 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Lee A. Newberg, Dec 15 2006
EXTENSIONS
More terms from Mark van Hoeij, Dec 21 2013
STATUS
approved