login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292781
Triangle read by rows: T(n,k) = T(n-k,k-1) with T(0,0) = 1 and T(n,0) = -1/n * Sum_{k=1..A003056(n)} (-1)^k * (2*k+1) * (n+1-A060544(k+1)) * T(n,k).
2
1, -24, 1, 252, -24, -1472, 252, 1, 4830, -1472, -24, -6048, 4830, 252, -16744, -6048, -1472, 1, 84480, -16744, 4830, -24, -113643, 84480, -6048, 252, -115920, -113643, -16744, -1472, 534612, -115920, 84480, 4830, 1, -370944, 534612, -113643, -6048, -24
OFFSET
0,2
LINKS
EXAMPLE
First few rows are:
1;
-24, 1;
252, -24;
-1472, 252, 1;
4830, -1472, -24;
-6048, 4830, 252;
-16744, -6048, -1472, 1;
84480, -16744, 4830, -24;
-113643, 84480, -6048, 252;
-115920, -113643, -16744, -1472;
534612, -115920, 84480, 4830, 1.
-----------------------------------------
n=5
T(5,1) = T(4,0) = 4830, T(5,2) = T(3,1) = 252.
T(5,0) = -1/5 * Sum_{k=1..2} (-1)^k * (2*k+1) * (5+1-A060544(k+1)) * T(n,k) = -1/5 * ((-3)*(-4)*4830 + 5*(-22)*252) = -6048.
n=6
T(6,1) = T(5,0) = -6048, T(6,2) = T(4,1) = -1472, T(6,3) = T(3,2) = 1.
T(6,0) = -1/6 * Sum_{k=1..3} (-1)^k * (2*k+1) * (6+1-A060544(k+1)) * T(n,k) = -1/6 * ((-3)*(-3)*(-6048) + 5*(-21)*(-1472) - 7*(-48)*1) = -16744.
PROG
(Ruby)
def A292781(n)
ary = [[1]]
(1..n).each{|i|
m = ((Math.sqrt(1 + 8 * i) - 1) / 2).to_i
a = (1..m).map{|j| ary[i - j][j - 1]}
ary << [-(1..m).inject(0){|s, j| s + (-1) ** (j % 2) * (2 * j + 1) * (i - 9 * j * (j + 1) / 2) * a[j - 1]} / i] + a
}
ary.flatten
end
p A292781(20)
CROSSREFS
All columns are A000594.
Sequence in context: A040599 A076721 A232988 * A090215 A318105 A040570
KEYWORD
sign,tabf
AUTHOR
Seiichi Manyama, Sep 23 2017
STATUS
approved