login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292783
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. 1/sqrt(1 - 2*k*x).
2
1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 12, 15, 0, 1, 4, 27, 120, 105, 0, 1, 5, 48, 405, 1680, 945, 0, 1, 6, 75, 960, 8505, 30240, 10395, 0, 1, 7, 108, 1875, 26880, 229635, 665280, 135135, 0, 1, 8, 147, 3240, 65625, 967680, 7577955, 17297280, 2027025, 0, 1, 9, 192, 5145, 136080, 2953125, 42577920, 295540245, 518918400, 34459425, 0
OFFSET
0,8
FORMULA
O.g.f. of column k: 1/(1 - k*x/(1 - 2*k*x/(1 - 3*k*x/(1 - 4*k*x/(1 - 5*k*x/(1 - ...)))))), a continued fraction.
E.g.f. of column k: 1/sqrt(1 - 2*k*x).
A(n,k) = k^n*A001147(n).
EXAMPLE
E.g.f. of column k: A_k(x) = 1 + k*x/1! + 3*k^2*x^2/2! + 15*k^3*x^3/3! + 105*k^4*x^4/4! + 945*k^5*x^5/5! + 10395*k^6*x^6/6! +
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, ...
0, 3, 12, 27, 48, 75, ...
0, 15, 120, 405, 960, 1875, ...
0, 105, 1680, 8505, 26880, 65625, ...
0, 945, 30240, 229635, 967680, 2953125, ...
MATHEMATICA
Table[Function[k, n! SeriesCoefficient[1/Sqrt[1 - 2 k x], {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
Table[Function[k, SeriesCoefficient[1/(1 + ContinuedFractionK[-i k x, 1, {i, 1, n}]), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
CROSSREFS
Columns k=0..4 give A000007, A001147, A001813, A011781, A144828.
Rows n=0.2 give A000012, A001477, A033428.
Main diagonal gives A292784.
Cf. A131182.
Sequence in context: A340798 A355427 A122078 * A320354 A285320 A347710
KEYWORD
nonn,tabl
AUTHOR
Ilya Gutkovskiy, Sep 23 2017
STATUS
approved