login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131182
Table T(n,k) = n!*k^n, read by upwards antidiagonals.
3
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 6, 8, 3, 1, 0, 24, 48, 18, 4, 1, 0, 120, 384, 162, 32, 5, 1, 0, 720, 3840, 1944, 384, 50, 6, 1, 0, 5040, 46080, 29160, 6144, 750, 72, 7, 1, 0, 40320, 645120, 524880, 122880, 15000, 1296, 98, 8, 1, 0, 362880, 10321920, 11022480, 2949120, 375000, 31104, 2058, 128, 9, 1
OFFSET
0,8
COMMENTS
For k>0, T(n,k) is the n-th moment of the exponential distribution with mean = k. - Geoffrey Critzer, Jan 06 2019
T(n,k) is the minimum value of Product_{i=1..n} Sum_{j=1..k} r_j[i] where each r_j is a permutation of {1..n}. For the maximum value, see A331988. - Chai Wah Wu, Sep 01 2022
LINKS
Chai Wah Wu, Permutations r_j such that ∑i∏j r_j(i) is maximized or minimized, arXiv:1508.02934 [math.CO], 2015-2020.
Chai Wah Wu, On rearrangement inequalities for multiple sequences, arXiv:2002.10514 [math.CO], 2020.
FORMULA
From Ilya Gutkovskiy, Aug 11 2017: (Start)
G.f. of column k: 1/(1 - k*x/(1 - k*x/(1 - 2*k*x/(1 - 2*k*x/(1 - 3*k*x/(1 - 3*k*x/(1 - ...))))))), a continued fraction.
E.g.f. of column k: 1/(1 - k*x). (End)
EXAMPLE
The (inverted) table begins:
k=0: 1, 0, 0, 0, 0, 0, ... (A000007)
k=1: 1, 1, 2, 6, 24, 120, ... (A000142)
k=2: 1, 2, 8, 48, 384, 3840, ... (A000165)
k=3: 1, 3, 18, 162, 1944, 29160, ... (A032031)
k=4: 1, 4, 32, 384, 6144, 122880, ... (A047053)
k=5: 1, 5, 50, 750, 15000, 375000, ... (A052562)
k=6: 1, 6, 72, 1296, 31104, 933120, ... (A047058)
k=7: 1, 7, 98, 2058, 57624, 2016840, ... (A051188)
k=8: 1, 8, 128, 3072, 98304, 3932160, ... (A051189)
k=9: 1, 9, 162, 4374, 157464, 7085880, ... (A051232)
Main diagonal is 1, 1, 8, 162, 6144, 375000, ... (A061711).
MAPLE
T:= (n, k)-> n!*k^n:
seq(seq(T(d-k, k), k=0..d), d=0..12); # Alois P. Heinz, Jan 06 2019
PROG
(Python)
from math import factorial
def A131182_T(n, k): # compute T(n, k)
return factorial(n)*k**n # Chai Wah Wu, Sep 01 2022
CROSSREFS
Main diagonal gives A061711.
Sequence in context: A130167 A084938 A135898 * A254883 A266599 A327365
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Sep 25 2007
STATUS
approved