The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A131179 a(n) = if n mod 2 == 0 then n*(n+1)/2, otherwise (n-1)*n/2 + 1. 3
 0, 1, 3, 4, 10, 11, 21, 22, 36, 37, 55, 56, 78, 79, 105, 106, 136, 137, 171, 172, 210, 211, 253, 254, 300, 301, 351, 352, 406, 407, 465, 466, 528, 529, 595, 596, 666, 667, 741, 742, 820, 821, 903, 904, 990, 991, 1081, 1082, 1176, 1177, 1275, 1276, 1378, 1379, 1485, 1486 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..10000 Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1). FORMULA G.f.: -x*(1+2*x-x^2+2*x^3) / ( (1+x)^2*(x-1)^3 ). - R. J. Mathar, Sep 05 2012 a(n) = ( n^2+1+(n-1)*(-1)^n )/2. - Luce ETIENNE, Aug 19 2014 MATHEMATICA LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 3, 4, 10}, 60] (* Jean-François Alcover, Feb 12 2016 *) PROG (Haskell) a131179 n = (n + 1 - m) * n' + m where (n', m) = divMod n 2 -- Reinhard Zumkeller, Oct 12 2013 (Magma) [(n^2+1+(n-1)*(-1)^n )/2: n in [0..60]]; // Vincenzo Librandi, Feb 12 2016 (Python) def A131179(n): return n*(n+1)//2 + (1-n)*(n % 2) # Chai Wah Wu, May 24 2022 CROSSREFS Cf. A128918. Sequence in context: A327300 A047341 A091910 * A079353 A242654 A243681 Adjacent sequences: A131176 A131177 A131178 * A131180 A131181 A131182 KEYWORD nonn,easy AUTHOR Philippe LALLOUET, Sep 16 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 10:53 EST 2023. Contains 367678 sequences. (Running on oeis4.)