login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047341
Numbers that are congruent to {3, 4} mod 7.
10
3, 4, 10, 11, 17, 18, 24, 25, 31, 32, 38, 39, 45, 46, 52, 53, 59, 60, 66, 67, 73, 74, 80, 81, 87, 88, 94, 95, 101, 102, 108, 109, 115, 116, 122, 123, 129, 130, 136, 137, 143, 144, 150, 151, 157, 158, 164, 165, 171
OFFSET
1,1
COMMENTS
Numbers m such that m^2 == 2 (mod 7). - Vincenzo Librandi, Aug 05 2010
Numbers k such that A056107(k)/7 is an integer. - Bruno Berselli, Feb 14 2017
FORMULA
a(n)^2 = 7*A056834(a(n)) + 2. - Bruno Berselli, Nov 28 2010
G.f.: x*(3 + x + 3*x^2)/((1 + x)*(1 - x)^2). - R. J. Mathar, Oct 08 2011
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi*tan(Pi/14)/7. - Amiram Eldar, Dec 12 2021
E.g.f.: 3 + ((14*x - 7)*exp(x) - 5*exp(-x))/4. - David Lovler, Sep 01 2022
From Amiram Eldar, Nov 22 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = 1.
Product_{n>=1} (1 + (-1)^n/a(n)) = 2*cos(Pi/7) - 1 (A160389 - 1). (End)
MATHEMATICA
LinearRecurrence[{1, 1, -1}, {3, 4, 10}, 50] (* Amiram Eldar, Dec 12 2021 *)
PROG
(PARI) a(n) = (14*n-5*(-1)^n-7)/4 \\ Charles R Greathouse IV, Jun 11 2015
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved