login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047339
Numbers that are congruent to {2, 3, 4} mod 7.
1
2, 3, 4, 9, 10, 11, 16, 17, 18, 23, 24, 25, 30, 31, 32, 37, 38, 39, 44, 45, 46, 51, 52, 53, 58, 59, 60, 65, 66, 67, 72, 73, 74, 79, 80, 81, 86, 87, 88, 93, 94, 95, 100, 101, 102, 107, 108, 109, 114, 115, 116, 121, 122, 123, 128, 129, 130, 135, 136, 137, 142
OFFSET
1,1
FORMULA
a(n+1) = 7*floor(n/3)+(n mod 3)+2. - Gary Detlefs, Mar 09 2010
G.f.: x*(2+x+x^2+3*x^3)/((1+x+x^2)*(x-1)^2). - R. J. Mathar, Dec 04 2011
From Wesley Ivan Hurt, Jun 08 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (21*n-15-12*cos(2*n*Pi/3)+4*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 7k-3, a(3k-1) = 7k-4, a(3k-2) = 7k-5. (End)
MAPLE
seq(7*floor(n/3)+(n mod 3)+2, n= 0..52); # Gary Detlefs, Mar 09 2010
MATHEMATICA
Select[Range[0, 150], MemberQ[{2, 3, 4}, Mod[#, 7]] &] (* Wesley Ivan Hurt, Jun 08 2016 *)
PROG
(Magma) [n : n in [0..150] | n mod 7 in [2..4]]; // Wesley Ivan Hurt, Jun 08 2016
CROSSREFS
Sequence in context: A165315 A284681 A309346 * A250483 A294485 A332772
KEYWORD
nonn,easy
STATUS
approved