Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #50 Nov 22 2024 06:27:23
%S 3,4,10,11,17,18,24,25,31,32,38,39,45,46,52,53,59,60,66,67,73,74,80,
%T 81,87,88,94,95,101,102,108,109,115,116,122,123,129,130,136,137,143,
%U 144,150,151,157,158,164,165,171
%N Numbers that are congruent to {3, 4} mod 7.
%C Numbers m such that m^2 == 2 (mod 7). - _Vincenzo Librandi_, Aug 05 2010
%C Numbers k such that A056107(k)/7 is an integer. - _Bruno Berselli_, Feb 14 2017
%H David Lovler, <a href="/A047341/b047341.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1).
%F a(n)^2 = 7*A056834(a(n)) + 2. - _Bruno Berselli_, Nov 28 2010
%F G.f.: x*(3 + x + 3*x^2)/((1 + x)*(1 - x)^2). - _R. J. Mathar_, Oct 08 2011
%F Sum_{n>=1} (-1)^(n+1)/a(n) = Pi*tan(Pi/14)/7. - _Amiram Eldar_, Dec 12 2021
%F E.g.f.: 3 + ((14*x - 7)*exp(x) - 5*exp(-x))/4. - _David Lovler_, Sep 01 2022
%F From _Amiram Eldar_, Nov 22 2024: (Start)
%F Product_{n>=1} (1 - (-1)^n/a(n)) = 1.
%F Product_{n>=1} (1 + (-1)^n/a(n)) = 2*cos(Pi/7) - 1 (A160389 - 1). (End)
%t LinearRecurrence[{1, 1, -1}, {3, 4, 10}, 50] (* _Amiram Eldar_, Dec 12 2021 *)
%o (PARI) a(n) = (14*n-5*(-1)^n-7)/4 \\ _Charles R Greathouse IV_, Jun 11 2015
%Y Cf. A056107, A056834, A160389.
%K nonn,easy
%O 1,1
%A _N. J. A. Sloane_