login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047344
Numbers that are congruent to {0, 1, 3, 4} mod 7.
1
0, 1, 3, 4, 7, 8, 10, 11, 14, 15, 17, 18, 21, 22, 24, 25, 28, 29, 31, 32, 35, 36, 38, 39, 42, 43, 45, 46, 49, 50, 52, 53, 56, 57, 59, 60, 63, 64, 66, 67, 70, 71, 73, 74, 77, 78, 80, 81, 84, 85, 87, 88, 91, 92, 94, 95, 98, 99, 101, 102, 105, 106, 108, 109
OFFSET
1,3
FORMULA
a(n+1) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=1, b(1)=3 and b(k)=7*2^(k-2) for k>1. - Philippe Deléham, Oct 17 2011
G.f.: x^2*(1+2*x+x^2+3*x^3) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Dec 04 2011
From Wesley Ivan Hurt, May 23 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (14n-19-3*i^(2n)-(1-i)*i^(-n)-(1+i)*i^n)/8 where i=sqrt(-1).
a(2n) = A047346(n), a(2n-1) = A047355(n). (End)
E.g.f.: (12 + sin(x) - cos(x) + (7*x - 8)*sinh(x) + (7*x - 11)*cosh(x))/4. - Ilya Gutkovskiy, May 24 2016
MAPLE
A047344:=n->(14*n-19-3*I^(2*n)-(1-I)*I^(-n)-(1+I)*I^n)/8: seq(A047344(n), n=1..100); # Wesley Ivan Hurt, May 23 2016
MATHEMATICA
Table[(14n-19-3*I^(2n)-(1-I)*I^(-n)-(1+I)*I^n)/8, {n, 80}] (* Wesley Ivan Hurt, May 23 2016 *)
LinearRecurrence[{1, 0, 0, 1, -1}, {0, 1, 3, 4, 7}, 80] (* Harvey P. Dale, May 06 2021 *)
PROG
(PARI) forstep(n=0, 200, [1, 2, 1, 3], print1(n", ")) \\ Charles R Greathouse IV, Oct 17 2011
(Magma) [n : n in [0..150] | n mod 7 in [0, 1, 3, 4]]; // Wesley Ivan Hurt, May 23 2016
CROSSREFS
KEYWORD
nonn,easy
EXTENSIONS
More terms from Wesley Ivan Hurt, May 23 2016
STATUS
approved