login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers that are congruent to {0, 1, 3, 4} mod 7.
1

%I #28 Sep 08 2022 08:44:57

%S 0,1,3,4,7,8,10,11,14,15,17,18,21,22,24,25,28,29,31,32,35,36,38,39,42,

%T 43,45,46,49,50,52,53,56,57,59,60,63,64,66,67,70,71,73,74,77,78,80,81,

%U 84,85,87,88,91,92,94,95,98,99,101,102,105,106,108,109

%N Numbers that are congruent to {0, 1, 3, 4} mod 7.

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,1,-1).

%F a(n+1) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=1, b(1)=3 and b(k)=7*2^(k-2) for k>1. - _Philippe Deléham_, Oct 17 2011

%F G.f.: x^2*(1+2*x+x^2+3*x^3) / ( (1+x)*(x^2+1)*(x-1)^2 ). - _R. J. Mathar_, Dec 04 2011

%F From _Wesley Ivan Hurt_, May 23 2016: (Start)

%F a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.

%F a(n) = (14n-19-3*i^(2n)-(1-i)*i^(-n)-(1+i)*i^n)/8 where i=sqrt(-1).

%F a(2n) = A047346(n), a(2n-1) = A047355(n). (End)

%F E.g.f.: (12 + sin(x) - cos(x) + (7*x - 8)*sinh(x) + (7*x - 11)*cosh(x))/4. - _Ilya Gutkovskiy_, May 24 2016

%p A047344:=n->(14*n-19-3*I^(2*n)-(1-I)*I^(-n)-(1+I)*I^n)/8: seq(A047344(n), n=1..100); # _Wesley Ivan Hurt_, May 23 2016

%t Table[(14n-19-3*I^(2n)-(1-I)*I^(-n)-(1+I)*I^n)/8, {n, 80}] (* _Wesley Ivan Hurt_, May 23 2016 *)

%t LinearRecurrence[{1,0,0,1,-1},{0,1,3,4,7},80] (* _Harvey P. Dale_, May 06 2021 *)

%o (PARI) forstep(n=0,200,[1,2,1,3],print1(n", ")) \\ _Charles R Greathouse IV_, Oct 17 2011

%o (Magma) [n : n in [0..150] | n mod 7 in [0, 1, 3, 4]]; // _Wesley Ivan Hurt_, May 23 2016

%Y Cf. A030308, A047346, A047355.

%K nonn,easy

%O 1,3

%A _N. J. A. Sloane_

%E More terms from _Wesley Ivan Hurt_, May 23 2016