login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A374009
a(n) = (1 + (n+7)^2 - (n-8)*(-1)^n)/2.
9
29, 44, 48, 63, 71, 86, 98, 113, 129, 144, 164, 179, 203, 218, 246, 261, 293, 308, 344, 359, 399, 414, 458, 473, 521, 536, 588, 603, 659, 674, 734, 749, 813, 828, 896, 911, 983, 998, 1074, 1089, 1169, 1184, 1268, 1283, 1371, 1386, 1478, 1493, 1589, 1604, 1704, 1719
OFFSET
1,1
COMMENTS
Fill an array with the natural numbers n = 1,2,... along diagonals in alternating 'down' and 'up' directions. a(n) is row 8 of the boustrophedon-style array (see example).
In general, row k is given by (1+t^2+(n-k)*(-1)^t)/2, t = n+k-1. Here, k=8.
FORMULA
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
G.f.: -x*(29*x^4-15*x^3-54*x^2+15*x+29)/((x+1)^2*(x-1)^3).
a(n) = A374008(n+1) + (-1)^n.
EXAMPLE
[ 1] [ 2] [ 3] [ 4] [ 5] [ 6] [ 7] [ 8] [ 9] [10] [11] [12]
[ 1] 1 3 4 10 11 21 22 36 37 55 56 78 ...
[ 2] 2 5 9 12 20 23 35 38 54 57 77 ...
[ 3] 6 8 13 19 24 34 39 53 58 76 ...
[ 4] 7 14 18 25 33 40 52 59 75 ...
[ 5] 15 17 26 32 41 51 60 74 ...
[ 6] 16 27 31 42 50 61 73 ...
[ 7] 28 30 43 49 62 72 ...
[ 8] 29 44 48 63 71 ...
[ 9] 45 47 64 70 ...
[10] 46 65 69 ...
[11] 66 68 ...
[12] 67 ...
...
MATHEMATICA
CoefficientList[Series[-(29*x^4 - 15*x^3 - 54*x^2 + 15*x + 29)/((x + 1)^2*(x - 1)^3), {x, 0, 50}], x]
k := 8; Table[(1 + (n + k - 1)^2 + (n - k) (-1)^(n + k - 1))/2, {n, 80}]
PROG
(Magma) [(1 + (n+7)^2 - (n-8)*(-1)^n)/2: n in [1..80]];
CROSSREFS
For rows k = 1..10: A131179 (k=1) n>0, A373662 (k=2), A373663 (k=3), A374004 (k=4), A374005 (k=5), A374007 (k=6), A374008 (k=7), this sequence (k=8), A374010 (k=9), A374011 (k=10).
Row 8 of the table in A056011.
Column 8 of the rectangular array in A056023.
Sequence in context: A323628 A020997 A108280 * A248429 A077782 A059414
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Jun 24 2024
STATUS
approved