login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A373663
a(n) = (1 + (n+2)^2 + (n-3)*(-1)^n)/2.
10
6, 8, 13, 19, 24, 34, 39, 53, 58, 76, 81, 103, 108, 134, 139, 169, 174, 208, 213, 251, 256, 298, 303, 349, 354, 404, 409, 463, 468, 526, 531, 593, 598, 664, 669, 739, 744, 818, 823, 901, 906, 988, 993, 1079, 1084, 1174, 1179, 1273, 1278, 1376, 1381, 1483, 1488, 1594
OFFSET
1,1
COMMENTS
Fill an array with the natural numbers n = 1,2,... along diagonals in alternating 'down' and 'up' directions. a(n) is row 3 of the boustrophedon-style array (see example).
In general, row k is given by (1+t^2+(n-k)*(-1)^t)/2, t = n+k-1. Here, k=3.
FORMULA
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
a(n) = A373662(n+1) - (-1)^n.
G.f.: -x*(x^4+2*x^3-7*x^2+2*x+6)/((x+1)^2*(x-1)^3).
EXAMPLE
[ 1] [ 2] [ 3] [ 4] [ 5] [ 6] [ 7] [ 8] [ 9] [10] [11] [12]
[ 1] 1 3 4 10 11 21 22 36 37 55 56 78 ...
[ 2] 2 5 9 12 20 23 35 38 54 57 77 ...
[ 3] 6 8 13 19 24 34 39 53 58 76 ...
[ 4] 7 14 18 25 33 40 52 59 75 ...
[ 5] 15 17 26 32 41 51 60 74 ...
[ 6] 16 27 31 42 50 61 73 ...
[ 7] 28 30 43 49 62 72 ...
[ 8] 29 44 48 63 71 ...
[ 9] 45 47 64 70 ...
[10] 46 65 69 ...
[11] 66 68 ...
[12] 67 ...
...
MATHEMATICA
k := 3; Table[(1 + (n+k-1)^2 + (n-k) (-1)^(n+k-1))/2, {n, 80}]
PROG
(Magma) [(1 + (n+2)^2 + (n-3)*(-1)^n)/2: n in [1..80]];
(Python)
def A373663(n): return ((n+1)*(n+2)+6 if n&1 else (n+2)*(n+3)-4)>>1 # Chai Wah Wu, Jun 23 2024
CROSSREFS
For rows k = 1..10: A131179 (k=1) n>0, A373662 (k=2), this sequence (k=3), A374004 (k=4), A374005 (k=5), A374007 (k=6), A374008 (k=7), A374009 (k=8), A374010 (k=9), A374011 (k=10).
Row 3 of the example in A056011, Column 3 of the rectangular array in A056023.
Sequence in context: A190546 A190558 A063188 * A058938 A315877 A315878
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Jun 12 2024
STATUS
approved