login
A373660
Triangle read by rows: T(n, k) = (-1)^k*binomial(n, k) * A050446(n, n - k).
2
1, 2, -1, 6, -6, 1, 30, -42, 15, -1, 190, -340, 186, -32, 1, 1547, -3355, 2460, -700, 65, -1, 15106, -38430, 35295, -14140, 2355, -126, 1, 173502, -506114, 558285, -289520, 71295, -7413, 238, -1, 2286648, -7520040, 9681700, -6174224, 2033920, -328384, 22204, -440, 1
OFFSET
0,2
FORMULA
Row sums are the Euler numbers A000111.
EXAMPLE
Triangle starts:
[0] 1;
[1] 2, -1;
[2] 6, -6, 1;
[3] 30, -42, 15, -1;
[4] 190, -340, 186, -32, 1;
[5] 1547, -3355, 2460, -700, 65, -1;
[6] 15106, -38430, 35295, -14140, 2355, -126, 1;
[7] 173502, -506114, 558285, -289520, 71295, -7413, 238, -1;
MAPLE
T := (n, k) -> (-1)^k*binomial(n, k) * A050446(n, n - k):
for n from 0 to 7 do print(seq(T(n, k), k=0..n)) od;
CROSSREFS
Cf. A050446, A373659 (column 0), A000111 (row sums), A373658 (alternating row sums).
Sequence in context: A008297 A090582 A079641 * A364506 A222864 A232433
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Jun 12 2024
STATUS
approved