login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A373660
Triangle read by rows: T(n, k) = (-1)^k*binomial(n, k) * A050446(n, n - k).
2
1, 2, -1, 6, -6, 1, 30, -42, 15, -1, 190, -340, 186, -32, 1, 1547, -3355, 2460, -700, 65, -1, 15106, -38430, 35295, -14140, 2355, -126, 1, 173502, -506114, 558285, -289520, 71295, -7413, 238, -1, 2286648, -7520040, 9681700, -6174224, 2033920, -328384, 22204, -440, 1
OFFSET
0,2
FORMULA
Row sums are the Euler numbers A000111.
EXAMPLE
Triangle starts:
[0] 1;
[1] 2, -1;
[2] 6, -6, 1;
[3] 30, -42, 15, -1;
[4] 190, -340, 186, -32, 1;
[5] 1547, -3355, 2460, -700, 65, -1;
[6] 15106, -38430, 35295, -14140, 2355, -126, 1;
[7] 173502, -506114, 558285, -289520, 71295, -7413, 238, -1;
MAPLE
T := (n, k) -> (-1)^k*binomial(n, k) * A050446(n, n - k):
for n from 0 to 7 do print(seq(T(n, k), k=0..n)) od;
CROSSREFS
Cf. A050446, A373659 (column 0), A000111 (row sums), A373658 (alternating row sums).
Sequence in context: A008297 A090582 A079641 * A364506 A222864 A232433
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Jun 12 2024
STATUS
approved