login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A232433
E.g.f. satisfies: A(x,q) = exp( Integral A(x,q)*A(q*x,q) dx ).
2
1, 1, 2, 1, 6, 6, 2, 1, 24, 36, 22, 14, 6, 2, 1, 120, 240, 210, 160, 104, 56, 32, 14, 6, 2, 1, 720, 1800, 2040, 1830, 1448, 992, 674, 408, 232, 128, 68, 32, 14, 6, 2, 1, 5040, 15120, 21000, 21840, 19824, 15834, 12144, 8758, 5904, 3860, 2442, 1482, 870, 492, 260, 142, 68, 32, 14, 6, 2, 1
OFFSET
0,3
FORMULA
E.g.f. satisfies: d/dx A(x,q) = A(x,q)^2 * A(q*x,q).
Row sums equal the odd double factorials.
Limit of reversed rows yield A232434.
EXAMPLE
E.g.f.: A(x,q) = 1 + (1)*x + (2 + q)*x^2/2! + (6 + 6*q + 2*q^2 + q^3)*x^3/3!
+ (24 + 36*q + 22*q^2 + 14*q^3 + 6*q^4 + 2*q^5 + q^6)*x^4/4!
+ (120 + 240*q + 210*q^2 + 160*q^3 + 104*q^4 + 56*q^5 + 32*q^6 + 14*q^7 + 6*q^8 + 2*q^9 + q^10)*x^5/5! +...
The triangle of coefficients T(n,k) of x^n*q^k, for n>=0, k=0..n*(n-1)/2, in e.g.f. A(x,q) begins:
[1];
[1];
[2, 1];
[6, 6, 2, 1];
[24, 36, 22, 14, 6, 2, 1];
[120, 240, 210, 160, 104, 56, 32, 14, 6, 2, 1];
[720, 1800, 2040, 1830, 1448, 992, 674, 408, 232, 128, 68, 32, 14, 6, 2, 1];
[5040, 15120, 21000, 21840, 19824, 15834, 12144, 8758, 5904, 3860, 2442, 1482, 870, 492, 260, 142, 68, 32, 14, 6, 2, 1];
[40320, 141120, 231840, 275520, 280056, 251496, 212112, 170424, 129716, 95248, 67632, 46616, 31280, 20576, 13142, 8232, 5004, 2954, 1706, 966, 524, 276, 142, 68, 32, 14, 6, 2, 1]; ...
The limit of the reversed rows (A232434) begins:
[1, 2, 6, 14, 32, 68, 142, 276, 542, 1022, 1876, 3394, 6066, 10628, ...].
MATHEMATICA
nmax = 8; A[_, _] = 0; Do[A[x_, q_] = Exp[Integrate[A[x, q] A[q x, q], x]] + O[x]^n // Normal // Simplify, {n, nmax}];
CoefficientList[#, q]& /@ (CoefficientList[A[x, q], x] Range[0, nmax-1]!) // Flatten (* Jean-François Alcover, Oct 27 2018 *)
PROG
(PARI) {T(n, k)=local(A=1+x); for(i=1, n, A=exp(intformal(A*subst(A, x, x*y +x*O(x^n)), x))); n!*polcoeff(polcoeff(A, n, x), k, y)}
for(n=0, 12, for(k=0, n*(n-1)/2, print1(T(n, k), ", ")); print(""))
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Paul D. Hanna, Nov 23 2013
STATUS
approved