login
A182729
Square array T(n,k) = (n*k-1)*A000041(n) read by antidiagonals upwards.
4
0, 2, 1, 6, 6, 2, 15, 15, 10, 3, 28, 35, 24, 14, 4, 55, 63, 55, 33, 18, 5, 90, 121, 98, 75, 42, 22, 6, 154, 195, 187, 133, 95, 51, 26, 7, 240, 330, 300, 253, 168, 115, 60, 30, 8, 378, 510, 506, 405, 319, 203, 135, 69, 34, 9
OFFSET
1,2
FORMULA
T(n,1) = A182724(n).
T(n,24) = A183011(n).
EXAMPLE
Square array T(n,k) begins:
0, 1, 2, 3, 4, 5, ...
2, 6, 10, 14, 18, 22, ...
6, 15, 24, 33, 42, 51, ...
15, 35, 55, 75, 95, 115, ...
28, 63, 98, 133, 168, 203, ...
55, 121, 187, 253, 319, 385, ...
MAPLE
T:= (n, k)-> (n*k-1)*combinat[numbpart](n):
seq (seq (T(d-k, k), k=1..d-1), d=2..11);
MATHEMATICA
Table[With[{n = m - k + 1}, (n k - 1) PartitionsP[n]], {m, 10}, {k, m}] // Flatten (* Michael De Vlieger, Nov 02 2017 *)
KEYWORD
nonn,easy,tabl
AUTHOR
Omar E. Pol, Jan 22 2011
STATUS
approved