login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A183009
a(n) = 24*n*p(n) = 24*n*A000041(n).
6
24, 96, 216, 480, 840, 1584, 2520, 4224, 6480, 10080, 14784, 22176, 31512, 45360, 63360, 88704, 121176, 166320, 223440, 300960, 399168, 529056, 692760, 907200, 1174800, 1520064, 1950480, 2498496, 3177240, 4034880, 5090448, 6412032
OFFSET
1,1
COMMENTS
a(n) is also the sum of the partition number of n and the "trace" Tr(n) of A183011. a(n) = p(n) + Tr(n).
a(n) is also the number of "sectors" or "half-periods" in all partitions of n in some versions of the shell model of partitions of A135010.
FORMULA
a(n) = A008606(n)*A000041(n) = 24*A066186(n) = n*A183008(n).
a(n) = p(n) + Tr(n) = A000041(n) + A183011(n).
a(n) = 12*M_2(n) = 24*spt(n) + 12*N_2(n) = 12*A220909(n) = 24*A092269(n) + 12*A220908(n). - Omar E. Pol, Feb 17 2013
EXAMPLE
The number of partitions of 6 is p(6) = A000041(6) = 11, so a(6) = 24*6*11 = 1584.
Also the trace Tr(6) = A183011(6) = 1573, so a(6) = p(6) + Tr(6) = 11 + 1573 = 1584.
MATHEMATICA
Table[24n*PartitionsP[n], {n, 40}] (* Harvey P. Dale, Mar 07 2019 *)
CROSSREFS
Partial sums of A183006. Column 24 of A182728.
Sequence in context: A335144 A209432 A195824 * A272871 A319577 A277563
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Jan 22 2011
STATUS
approved