This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A220908 The second rank moment function N_2(n). 11
 0, 2, 8, 20, 42, 80, 140, 238, 380, 602, 910, 1372, 1996, 2900, 4102, 5790, 8002, 11046, 14980, 20282, 27090, 36092, 47546, 62510, 81374, 105700, 136210, 175084, 223510, 284694, 360410, 455244, 572054, 717160, 894964, 1114470, 1382032, 1710262, 2108750, 2594704, 3182120 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS N_2(n) is also called the second Atkin-Garvan moment (see Andrews' paper). - Omar E. Pol, Oct 23 2013 REFERENCES F. G. Garvan, Higher-order spt functions, Adv. Math. 228 (2011), no. 1, 241-265; http://www.math.ufl.edu/~fgarvan/papers/hspt.pdf. See Eq. (1.1). LINKS Alois P. Heinz, Table of n, a(n) for n = 1..1000 G. E. Andrews, The number of smallest parts in the partitions of n, p. 3 F. G. Garvan, Higher-order spt functions, Adv. Math. 228 (2011), no. 1, 241-265. See Eq. (1.1). FORMULA a(n) = 2*A220907(n) = 2*(n*A000041(n)-A092269(n)). a(n) = 2*(A066186(n) - A092269(n)). - Omar E. Pol, Jan 09 2013 a(n) = A220909(n) - A211982(n). - Omar E. Pol, Jan 16 2013 a(n) ~ exp(Pi*sqrt(2*n/3))/(2*sqrt(3)) * (1 - (3*sqrt(6)/(2*Pi) + Pi/(24*sqrt(6)))/sqrt(n) + (5/48 + Pi^2/6912)/n). - Vaclav Kotesovec, Jul 31 2017 MAPLE b:= proc(n, i) option remember; `if`(n=0 or i<1, 0,       `if`(irem(n, i, 'r')=0, r, 0)+add(b(n-i*j, i-1), j=0..n/i))     end: a:= n-> 2*(n*combinat[numbpart](n)- b(n, n)): seq(a(n), n=1..60);  # Alois P. Heinz, Jan 09 2013 MATHEMATICA terms = 41; gf = Sum[x^n/(1 - x^n)*Product[1/(1 - x^k), {k, n, terms}], {n, 1, terms}]; spt = CoefficientList[ Series[gf, {x, 0, terms}], x] // Rest; a[n_] := 2*(n*PartitionsP[n] - spt[[n]]); Table[a[n], {n, 1, terms}] (* Jean-François Alcover, Jan 17 2013, after g.f. of spt(n) *) CROSSREFS Cf. A000041, A092269, A220907. Sequence in context: A203420 A048096 A072250 * A057566 A009303 A096586 Adjacent sequences:  A220905 A220906 A220907 * A220909 A220910 A220911 KEYWORD nonn AUTHOR N. J. A. Sloane, Jan 02 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 16:53 EDT 2018. Contains 316270 sequences. (Running on oeis4.)