OFFSET
1,1
COMMENTS
Also total number of smallest parts in all partitions of n, multiplied by 2.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..1000
G. E. Andrews, The number of smallest parts in the partitions of n
F. G. Garvan, Congruences for Andrews' smallest parts partition function and new congruences for Dyson's rank
F. G. Garvan, Higher order spt-functions
FORMULA
a(n) ~ exp(Pi*sqrt(2*n/3)) / (Pi*sqrt(2*n)) * (1 - Pi/(24*sqrt(6*n)) + (144+Pi^2)/(6912*n)). - Vaclav Kotesovec, Jul 31 2017
MAPLE
b:= proc(n, i) option remember; `if`(n=0 or i=1, n,
`if`(irem(n, i, 'r')=0, r, 0)+add(b(n-i*j, i-1), j=0..n/i))
end:
a:= n-> 2* b(n, n):
seq(a(n), n=1..60); # Alois P. Heinz, Jan 17 2013
MATHEMATICA
terms = 41; gf = Sum[x^n/(1 - x^n)*Product[1/(1 - x^k), {k, n, terms}], {n, 1, terms}]; 2*CoefficientList[ Series[gf, {x, 0, terms}], x] // Rest (* Jean-François Alcover, Jan 17 2013, from 2nd formula *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Omar E. Pol, Jan 03 2013
STATUS
approved