login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A057566
Number of collinear triples in a 3 X n rectangular grid.
2
0, 1, 2, 8, 20, 43, 78, 130, 200, 293, 410, 556, 732, 943, 1190, 1478, 1808, 2185, 2610, 3088, 3620, 4211, 4862, 5578, 6360, 7213, 8138, 9140, 10220, 11383, 12630, 13966, 15392, 16913, 18530, 20248, 22068, 23995, 26030, 28178, 30440, 32821, 35322
OFFSET
0,3
FORMULA
Conjecture: a(n) = 5*floor((2n^3 - 3n^2 - n)/24) + floor((2(n-1)^3 - 3(n-1)^2 - (n-1))/24) + n, which fits all of the listed terms.
From R. J. Mathar, May 23 2010: (Start)
a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5) = n^3/2 - n^2 + n + (1-(-1)^n)/4.
G.f.: x*(1 - x + 4*x^2 + 2*x^3)/((1+x)*(x-1)^4). (End)
MATHEMATICA
LinearRecurrence[{3, -2, -2, 3, -1}, {0, 1, 2, 8, 20}, 50] (* Paolo Xausa, Feb 22 2024 *)
CROSSREFS
Second differences give A047264. Third differences are periodic {5, 1, 5, 1, ...} and form A010686. See A000938 for the n X n grid.
Sequence in context: A048096 A072250 A220908 * A333642 A009303 A096586
KEYWORD
nonn,easy
AUTHOR
John W. Layman, Oct 04 2000
STATUS
approved