login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A232434
Limit of rows in triangle A232433 when read in reverse order.
1
1, 2, 6, 14, 32, 68, 142, 276, 542, 1022, 1876, 3394, 6066, 10628, 18412, 31344, 52868, 88370, 146180, 239310, 388370, 624688, 997586, 1582640, 2493908, 3902574, 6069194, 9378078, 14411150, 22034860, 33520642, 50747992, 76471200, 114689926, 171242092, 254587046, 376981800, 556129468, 817412048, 1197096472, 1747047580
OFFSET
1,2
COMMENTS
Conjecture: a(n) equals sum of f(lambda) over all partitions of n, where f is defined recursively as f({})=1; f(lambda)=binomial(i+j,j) f(mu)f(nu); with i and j the row and column of the box in the Young-Ferrers diagram of lambda such that i+j is maximized, and mu is lambda with the first i rows removed, and nu is lambda with the first j columns removed. See Math Overflow link. - Wouter Meeussen, Apr 07 2014
LINKS
Matt Fayers, A function from partitions to natural numbers - is it familiar?, MathOverflow 30 may 2013. [From Wouter Meeussen, Apr 07 2014]
FORMULA
E.g.f. of triangle A232433 satisfies: G(x,q) = exp(Integral G(x,q)*G(q*x,q) dx).
EXAMPLE
The triangle A232433 of coefficients of x^n*q^k, n >= 0, k = 0..n*(n-1)/2, begins:
[1];
[1];
[2, 1];
[6, 6, 2, 1];
[24, 36, 22, 14, 6, 2, 1];
[120, 240, 210, 160, 104, 56, 32, 14, 6, 2, 1];
[720, 1800, 2040, 1830, 1448, 992, 674, 408, 232, 128, 68, 32, 14, 6, 2, 1]; ...
where this sequence is the limit of the rows read in reverse order.
MATHEMATICA
Clear[c]; c[0] = 1; Table[f = Sum[c[k] x^k/k!, {k, 0, n}];
c[n + 1] = n! SeriesCoefficient[f^2 (f /. x -> q x), {x, 0, n}] // Simplify; Coefficient[q*c[n + 1], q^(1 + n*(n - 1)/2)], {n, 0, 64}]
(* or via combinatorics: *)
Clear[f]; f[{}]:=1; f[\[Lambda]_?PartitionQ]:=f[\[Lambda]]=Block[{temp, i, j, \[Mu], \[Nu]}, temp=\[Lambda]+Range[Length[\[Lambda]]]; {i}=First@Position[temp, Max[temp], 1, 1]; j=\[Lambda][[i]]; \[Mu]=Drop[\[Lambda], i]; \[Nu]=DeleteCases[\[Lambda]-j, q_/; (q<=0)]; Binomial[i+j, j]f[\[Mu]]f[\[Nu]]];
Table[Total[f/@IntegerPartitions[n]], {n, 0, 24}] (* Wouter Meeussen, Apr 07 2014 *)
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(intformal(A*subst(A, x, x*y +x*O(x^n)), x))); n!*polcoeff(polcoeff(A, n, x), (n-1)*(n-2)/2, y)}
for(n=1, 20, print1(a(n), ", "))
CROSSREFS
Cf. A232433.
Sequence in context: A301554 A217941 A346679 * A096238 A074878 A065495
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 23 2013
STATUS
approved