login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A232434 Limit of rows in triangle A232433 when read in reverse order. 1
1, 2, 6, 14, 32, 68, 142, 276, 542, 1022, 1876, 3394, 6066, 10628, 18412, 31344, 52868, 88370, 146180, 239310, 388370, 624688, 997586, 1582640, 2493908, 3902574, 6069194, 9378078, 14411150, 22034860, 33520642, 50747992, 76471200, 114689926, 171242092, 254587046, 376981800, 556129468, 817412048, 1197096472, 1747047580 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Conjecture: a(n) equals sum of f(lambda) over all partitions of n, where f is defined recursively as f({})=1; f(lambda)=binomial(i+j,j) f(mu)f(nu); with i and j the row and column of the box in the Young-Ferrers diagram of lambda such that i+j is maximized, and mu is lambda with the first i rows removed, and nu is lambda with the first j columns removed. See Math Overflow link. - Wouter Meeussen, Apr 07 2014

LINKS

Table of n, a(n) for n=1..41.

Matt Fayers, A function from partitions to natural numbers - is it familiar?, MathOverflow 30 may 2013. [From Wouter Meeussen, Apr 07 2014]

FORMULA

E.g.f. of triangle A232433 satisfies: G(x,q) = exp(Integral G(x,q)*G(q*x,q) dx).

EXAMPLE

The triangle A232433 of coefficients of x^n*q^k, n >= 0, k = 0..n*(n-1)/2, begins:

[1];

[1];

[2, 1];

[6, 6, 2, 1];

[24, 36, 22, 14, 6, 2, 1];

[120, 240, 210, 160, 104, 56, 32, 14, 6, 2, 1];

[720, 1800, 2040, 1830, 1448, 992, 674, 408, 232, 128, 68, 32, 14, 6, 2, 1]; ...

where this sequence is the limit of the rows read in reverse order.

MATHEMATICA

Clear[c]; c[0] = 1; Table[f = Sum[c[k] x^k/k!, {k, 0, n}];

c[n + 1] = n! SeriesCoefficient[f^2 (f /. x -> q x), {x, 0, n}] // Simplify; Coefficient[q*c[n + 1], q^(1 + n*(n - 1)/2)], {n, 0, 64}]

(* or via combinatorics: *)

Clear[f]; f[{}]:=1; f[\[Lambda]_?PartitionQ]:=f[\[Lambda]]=Block[{temp, i, j, \[Mu], \[Nu]}, temp=\[Lambda]+Range[Length[\[Lambda]]]; {i}=First@Position[temp, Max[temp], 1, 1]; j=\[Lambda][[i]]; \[Mu]=Drop[\[Lambda], i]; \[Nu]=DeleteCases[\[Lambda]-j, q_/; (q<=0)]; Binomial[i+j, j]f[\[Mu]]f[\[Nu]]];

Table[Total[f/@IntegerPartitions[n]], {n, 0, 24}] (* Wouter Meeussen, Apr 07 2014 *)

PROG

(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(intformal(A*subst(A, x, x*y +x*O(x^n)), x))); n!*polcoeff(polcoeff(A, n, x), (n-1)*(n-2)/2, y)}

for(n=1, 20, print1(a(n), ", "))

CROSSREFS

Cf. A232433.

Sequence in context: A301554 A217941 A346679 * A096238 A074878 A065495

Adjacent sequences: A232431 A232432 A232433 * A232435 A232436 A232437

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Nov 23 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 21:40 EST 2022. Contains 358594 sequences. (Running on oeis4.)