login
A232432
Number of compositions of n avoiding the pattern 111.
14
1, 1, 2, 3, 7, 11, 21, 34, 59, 114, 178, 284, 522, 823, 1352, 2133, 3739, 5807, 9063, 14074, 23639, 36006, 56914, 87296, 131142, 214933, 324644, 487659, 739291, 1108457, 1724673, 2558386, 3879335, 5772348, 8471344, 12413666, 19109304, 27886339, 40816496
OFFSET
0,3
COMMENTS
Number of compositions of n into parts with multiplicity <= 2.
EXAMPLE
a(4) = 7: [4], [3,1], [2,2], [1,3], [2,1,1], [1,2,1], [1,1,2].
a(5) = 11: [5], [4,1], [3,2], [2,3], [1,4], [3,1,1], [2,2,1], [1,3,1], [2,1,2], [1,2,2], [1,1,3].
a(6) = 21: [6], [4,2], [3,3], [5,1], [2,4], [1,5], [2,1,3], [1,2,3], [1,1,4], [4,1,1], [3,2,1], [2,3,1], [1,4,1], [3,1,2], [1,3,2], [1,2,2,1], [2,1,1,2], [1,2,1,2], [1,1,2,2], [2,2,1,1], [2,1,2,1].
MAPLE
b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0,
add(b(n-i*j, i-1, p+j)/j!, j=0..min(n/i, 2))))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..50);
MATHEMATICA
f[list_]:=Apply[And, Table[Count[list, i]<3, {i, 1, Max[list]}]];
g[list_]:=Length[list]!/Apply[Times, Table[Count[list, i]!, {i, 1, Max[list]}]];
a[n_] := If[n == 0, 1, Total[Map[g, Select[IntegerPartitions[n], f]]]];
Table[a[n], {n, 0, 35}] (* Geoffrey Critzer, Nov 25 2013, updated by Jean-François Alcover, Nov 20 2023 *)
CROSSREFS
Cf. A000726 (partitions avoiding 111), A032020 (pattern 11), A128695 (adjacent pattern 111).
Column k=2 of A243081.
The case of partitions is ranked by A004709.
The version for patterns is A080599.
(1,1,1,1)-avoiding partitions are counted by A232464.
The (1,1,1)-matching version is A335455.
Patterns matched by compositions are counted by A335456.
The version for prime indices is A335511.
(1,1,1)-avoiding compositions are ranked by A335513.
Sequence in context: A014529 A095015 A024367 * A037078 A034431 A339610
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 23 2013
STATUS
approved