login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A126470
Triangle, read by rows, where row n lists coefficients of q in F(n,q) that satisfies: F(n,q) = Sum_{k=0..n-1} C(n-1,k)*F(k,q)*F(n-k-1,q)*q^k for n>0, with F(0,q) = 1.
6
1, 1, 1, 1, 1, 3, 1, 1, 1, 6, 7, 5, 3, 1, 1, 1, 10, 25, 25, 26, 11, 12, 5, 3, 1, 1, 1, 15, 65, 110, 136, 117, 92, 70, 43, 32, 17, 12, 5, 3, 1, 1, 1, 21, 140, 385, 616, 784, 694, 687, 478, 411, 255, 222, 127, 91, 50, 39, 17, 12, 5, 3, 1, 1, 1, 28, 266, 1106, 2471, 4032, 4887, 5189
OFFSET
0,6
COMMENTS
Row sums equal the factorials: F(n,1) = n!.
Limit of reversed rows equals A126471. Largest term in rows equal A126472.
FORMULA
From Paul D. Hanna, Oct 04 2008: (Start)
E.g.f. satisfies: A(x,q) = exp( Integral A(q*x,q) dx ); further,
A(q^n*x,q) = exp( q^n * Integral A(q^(n+1)*x,q) dx ) for n>=0, where A(x,q) = Sum_{n>=0} x^n*[Sum_{k=0..n(n-1)/2} T(n,k)*q^k]/n!. (End)
E.g.f. satisfies: d/dx A(x,q) = A(x,q) * A(q*x,q) with A(0,q)=1; i.e., the logarithmic derivative of A(x,q) with respect to x equals A(q*x,q). - Paul D. Hanna, Oct 04 2008
EXAMPLE
Number of terms in row n is: n*(n-1)/2 + 1.
Row functions B(n,q) begin:
F(0,q) = F(1,q) = 1;
F(2,q) = 1 + q;
F(3,q) = 1 + 3*q + q^2 + q^3;
F(4,q) = 1 + 6*q + 7*q^2 + 5*q^3 + 3*q^4 + q^5 + q^6.
Triangle begins:
1;
1;
1, 1;
1, 3, 1, 1;
1, 6, 7, 5, 3, 1, 1;
1, 10, 25, 25, 26, 11, 12, 5, 3, 1, 1;
1, 15, 65, 110, 136, 117, 92, 70, 43, 32, 17, 12, 5, 3, 1, 1;
1, 21, 140, 385, 616, 784, 694, 687, 478, 411, 255, 222, 127, 91, 50, 39, 17, 12, 5, 3, 1, 1;
1, 28, 266, 1106, 2471, 4032, 4887, 5189, 4832, 4240, 3426, 2658, 2143, 1534, 1143, 790, 575, 351, 262, 151, 99, 58, 39, 17, 12, 5, 3, 1, 1;
1, 36, 462, 2730, 8589, 17892, 28519, 35613, 40639, 39200, 37934, 31508, 28076, 21570, 18288, 13451, 11009, 7747, 6120, 4089, 3106, 2056, 1530, 943, 683, 396, 289, 160, 108, 58, 39, 17, 12, 5, 3, 1, 1;
1, 45, 750, 6000, 25977, 70497, 141499, 220500, 291877, 336945, 357638, 347396, 323795, 288162, 247473, 207630, 170336, 139565, 109967, 87581, 66534, 51411, 37845, 28948, 20626, 15284, 10727, 7810, 5169, 3731, 2446, 1700, 1063, 733, 426, 299, 170, 108, 58, 39, 17, 12, 5, 3, 1, 1;
...
E.g.f.: A(x,q) = 1 + x + x^2*(1+q)/2! + x^3*(1+3*q+q^2+q^3)/3! +...
where A(x,q) = exp( Integral A(q*x,q) dx ),
A(q*x,q) = exp( q * Integral A(q^2*x,q) dx ),
A(q^2*x,q) = exp( q^2 * Integral A(q^3*x,q) dx ), ...
A(q^n*x,q) = exp( q^n * Integral A(q^(n+1)*x,q) dx ) for n>=0.
Here the Integral is always in the limits 0..x.
MATHEMATICA
F[0, _] = 1; F[n_, q_] := F[n, q] = Sum[Binomial[n-1, k] F[k, q] F[n-k-1, q] q^k, {k, 0, n-1}];
row[n_] := CoefficientList[F[n, q], q];
Table[row[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Jul 26 2018 *)
PROG
(PARI) F(n, q)=if(n==0, 1, sum(k=0, n-1, binomial(n-1, k)*F(k, q)*F(n-k-1, q)*q^k))
{T(n, k)=Vec(F(n, q)+O(q^(n*(n-1)/2+1)))[k+1]}
for(n=0, 10, for(k=0, n*(n-1)/2, print1(T(n, k), ", ")); print(""))
(PARI) T(n, k)=local(A=vector(n+2, j, 1+j*x)); for(i=0, n+1, for(j=0, n, m=n+1-j; A[m]=exp(q^(m-1)*intformal(A[m+1]+x*O(x^n))))); polcoeff(n!*polcoeff(A[1], n, x), k, q) \\ From Paul D. Hanna, Oct 04 2008
for(n=0, 10, for(k=0, n*(n-1)/2, print1(T(n, k), ", ")); print(""))
(PARI) /* Faster to use: A(x, q) = 1 + Integral A(x, q)*A(qx, q) dx */
{T(n, k)=local(A=1+x+x*O(x^n)); for(i=0, n, A=1+intformal(A*subst(A, x, q*x))); polcoeff(n!*polcoeff(A, n, x), k, q)}
for(n=0, 10, for(k=0, n*(n-1)/2, print1(T(n, k), ", ")); print()) \\ Paul D. Hanna, Oct 04 2008
CROSSREFS
Cf. A126471, A126472; Bell number variant: A126347.
Sequence in context: A256973 A058057 A124372 * A179701 A276996 A102480
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Dec 31 2006
STATUS
approved