login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058057
Triangle giving coefficients of ménage hit polynomials.
8
1, 1, 0, 1, 1, 0, 1, 3, 1, 1, 1, 6, 6, 8, 3, 1, 10, 20, 38, 35, 16, 1, 15, 50, 134, 213, 211, 96, 1, 21, 105, 385, 915, 1479, 1459, 675, 1, 28, 196, 952, 3130, 7324, 11692, 11584, 5413, 1, 36, 336, 2100, 9090, 28764, 65784, 104364, 103605, 48800
OFFSET
0,8
COMMENTS
Triangle of coefficients of polynomials P(n; x) = Permanent(M), where M=[m(i,j)] is n X n matrix defined by m(i,j)=x if 0<=i-j<=1 else m(i,j)=1. - Vladeta Jovovic, Jan 23 2003
REFERENCES
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 198.
FORMULA
G.f.: Sum(n!*(x*y)^n/(1+x*(y-1))^(2*n+1),n=0..infinity). [Vladeta Jovovic, Dec 13 2009]
EXAMPLE
1; 1,0; 1,1,0; 1,3,1,1; 1,6,6,8,3; ...
MAPLE
V := proc(n) local k; add( binomial(2*n-k, k)*(n-k)!*(x-1)^k, k=0..n); end; W := proc(r, s) coeff( V(r), x, s ); end; a := (n, k)->W(n, n-k);
MATHEMATICA
max = 9; f[x_, y_] := Sum[n!*((x*y)^n/(1 + x*(y-1))^(2*n+1)), {n, 0, max}]; Flatten[ MapIndexed[ Take[#1, #2[[1]]] & , CoefficientList[ Series[f[x, y], {x, 0, max}, {y, 0, max}], {x, y}]]] (*Jean-François Alcover, Jun 29 2012, after Vladeta Jovovic *)
CROSSREFS
KEYWORD
nonn,easy,nice,tabl
AUTHOR
N. J. A. Sloane, Dec 02 2000
STATUS
approved