login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058060
Number of distinct prime factors of d(n), the number of divisors of n.
6
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 1, 1
OFFSET
1,12
COMMENTS
The sums of the first 10^k terms, for k = 1, 2, ..., are 9, 122, 1285, 13096, 131729, 1319621, 13203252, 132055132, 1320621032, 13206429426, 132064984784, ... . From these values the asymptotic mean of this sequence, whose existence was proven by Rieger (1972) and Heppner (1974) (see the Formula section), can be empirically evaluated by 1.3206... . - Amiram Eldar, Jan 15 2024
REFERENCES
József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter V, page 164.
LINKS
E. Heppner, Über die Iteration von Teilerfunktionen, Journal für die reine und angewandte Mathematik, Vol. 265 (1974), pp. 176-182.
G. J. Rieger, Über einige arithmetische Summen, Manuscripta Mathematica, Vol. 7 (1972), pp. 23-34.
FORMULA
a(n) = A001221(A000005(n)).
Sum_{k=1..n} a(k) = c * n + O(sqrt(n) * log(n)^5), where c is a constant (Rieger, 1972; Heppner, 1974). - Amiram Eldar, Jan 15 2024
EXAMPLE
n = 120 = 8*3*5, d(n) = 16 = 2^4, so a(120)=1.
MATHEMATICA
Table[PrimeNu[DivisorSigma[0, n]], {n, 1, 100}] (* G. C. Greubel, May 05 2017 *)
PROG
(PARI) a(n)=omega(numdiv(n)) \\ Charles R Greathouse IV, May 05 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Labos Elemer, Nov 23 2000
EXTENSIONS
Offset corrected by Sean A. Irvine, Jul 22 2022
STATUS
approved