OFFSET
1,12
COMMENTS
The sums of the first 10^k terms, for k = 1, 2, ..., are 9, 122, 1285, 13096, 131729, 1319621, 13203252, 132055132, 1320621032, 13206429426, 132064984784, ... . From these values the asymptotic mean of this sequence, whose existence was proven by Rieger (1972) and Heppner (1974) (see the Formula section), can be empirically evaluated by 1.3206... . - Amiram Eldar, Jan 15 2024
REFERENCES
József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter V, page 164.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..5001
E. Heppner, Über die Iteration von Teilerfunktionen, Journal für die reine und angewandte Mathematik, Vol. 265 (1974), pp. 176-182.
G. J. Rieger, Über einige arithmetische Summen, Manuscripta Mathematica, Vol. 7 (1972), pp. 23-34.
FORMULA
Sum_{k=1..n} a(k) = c * n + O(sqrt(n) * log(n)^5), where c is a constant (Rieger, 1972; Heppner, 1974). - Amiram Eldar, Jan 15 2024
EXAMPLE
n = 120 = 8*3*5, d(n) = 16 = 2^4, so a(120)=1.
MATHEMATICA
Table[PrimeNu[DivisorSigma[0, n]], {n, 1, 100}] (* G. C. Greubel, May 05 2017 *)
PROG
(PARI) a(n)=omega(numdiv(n)) \\ Charles R Greathouse IV, May 05 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Labos Elemer, Nov 23 2000
EXTENSIONS
Offset corrected by Sean A. Irvine, Jul 22 2022
STATUS
approved