login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A338160
Number of ways to represent n as a product of the greatest number of distinct factors.
3
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 4
OFFSET
1,12
COMMENTS
a(n) = A058060(n) for 1 < n < 60; a(60) = 3, A058060(60) = 1.
a(n) is the number of factorizations of n into A086435(n) distinct factors > 1.
a(n) depends only on the prime signature of n.
EXAMPLE
a(72) = 3 because 72 = 2*3*12 = 2*4*9 = 3*4*6 and 72 cannot be represented as a product of 4 distinct factors each greater than 1 (adding the factor 1 to each product doesn't change anything).
PROG
(PARI) a(n)={my(d=divisors(n)); my(F(r, k)=if(r==1, [0, 1], my(b=-1, c=0); for(k=2, k, if(r%d[k]==0, my([tb, tc]=self()(r/d[k], k-1)); if(tb>b, b=tb; c=0); if(tb==b, c+=tc))); [b+1, c])); F(n, #d)[2]} \\ Andrew Howroyd, Oct 14 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Letsko, Oct 14 2020
EXTENSIONS
More terms from Andrew Howroyd, Oct 14 2020
STATUS
approved