login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338162
Number of ways to write 4*n + 1 as x^2 + y^2 + z^2 + w^2 with x^2 + 7*y^2 = 2^k for some k = 0,1,2,..., where x, y, z, w are nonnegative integers with z <= w.
2
1, 2, 3, 2, 4, 4, 2, 3, 6, 3, 7, 6, 5, 6, 7, 3, 8, 9, 5, 6, 8, 4, 8, 7, 4, 8, 11, 3, 7, 8, 6, 8, 13, 6, 6, 8, 6, 9, 11, 8, 10, 12, 7, 7, 12, 5, 14, 14, 7, 7, 13, 5, 13, 13, 5, 8, 13, 8, 10, 10, 7, 13, 10, 6, 9, 14, 9, 10, 15, 7, 10
OFFSET
0,2
COMMENTS
Conjecture: a(n) > 0 for all n >= 0. Moreover, if m > 1 has the form 2^a*(2*b+1), and either a is positive and even, or b is even, then m can be written as x^2 + y^2 + z^2 + w^2 with x^2 + 7*y^2 = 2^k for some positive integer k, where x, y, z, w are nonnegative integers.
We have verified the latter assertion in the conjecture for m up to 4*10^8.
LINKS
Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190. See also arXiv:1604.06723 [math.NT].
Zhi-Wei Sun, Restricted sums of four squares, Int. J. Number Theory 15(2019), 1863-1893. See also arXiv:1701.05868 [math.NT].
Zhi-Wei Sun, Sums of four squares with certain restrictions, arXiv:2010.05775 [math.NT], 2020.
EXAMPLE
a(0) = 1, and 4*0 + 1 = 1^2 + 0^2 + 0^2 +0^2 with 1^2 + 7*0^2 = 2^0.
a(25) = 2, and 25 = 2^2 + 2^2 + 1^2 + 4^2 = 4^2 + 0^2 + 0^2 + 3^2
with 2^2 + 7*2^2 = 2^5 and 4^2 + 7*0^2 = 2^4.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
PQ[n_]:=PQ[n]=IntegerQ[Log[2, n]];
tab={}; Do[r=0; Do[If[SQ[4n+1-x^2-y^2-z^2]&&PQ[x^2+7y^2], r=r+1], {x, 1, Sqrt[4n+1]}, {y, 0, Sqrt[4n+1-x^2]}, {z, 0, Sqrt[(4n+1-x^2-y^2)/2]}]; tab=Append[tab, r], {n, 0, 70}]; tab
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Oct 14 2020
STATUS
approved