login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338164
Dirichlet g.f.: (zeta(s-2) / zeta(s))^2.
3
1, 6, 16, 33, 48, 96, 96, 168, 208, 288, 240, 528, 336, 576, 768, 816, 576, 1248, 720, 1584, 1536, 1440, 1056, 2688, 1776, 2016, 2448, 3168, 1680, 4608, 1920, 3840, 3840, 3456, 4608, 6864, 2736, 4320, 5376, 8064, 3360, 9216, 3696, 7920, 9984, 6336, 4416, 13056, 7008, 10656
OFFSET
1,2
COMMENTS
Dirichlet convolution of Jordan function J_2 (A007434) with itself.
FORMULA
Multiplicative with a(p^e) = p^(2*e - 4) * (p^4 + e * (p^2 - 1)^2 - 1).
a(n) = Sum_{d|n} J_2(d) * J_2(n/d).
a(n) = Sum_{d|n} d^2 * tau(d) * A007427(n/d), where tau = A000005.
a(n) = Sum_{d|n} d^2 * A321322(n/d).
(1/tau(n)) * Sum_{d|n} a(d) * tau(n/d) = n^2.
Sum_{k=1..n} a(k) ~ ((3*log(n) + 6*gamma - 1)/(9*zeta(3)^2) - 2*zeta'(3) / (3*zeta(3)^3)) * n^3, where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Oct 14 2020
MATHEMATICA
Jordan2[n_] := Sum[d^2 MoebiusMu[n/d], {d, Divisors[n]}]; a[n_] := Sum[Jordan2[d] Jordan2[n/d], {d, Divisors[n]}]; Table[a[n], {n, 1, 50}]
a[1] = 1; f[p_, e_] := p^(2 e - 4) (p^4 + e (p^2 - 1)^2 - 1); a[n_] := Times @@ f @@@ FactorInteger[n]; Table[a[n], {n, 1, 50}]
KEYWORD
nonn,mult
AUTHOR
Ilya Gutkovskiy, Oct 14 2020
STATUS
approved