login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306379
Dirichlet convolution of psi(n) with itself.
2
1, 6, 8, 21, 12, 48, 16, 60, 40, 72, 24, 168, 28, 96, 96, 156, 36, 240, 40, 252, 128, 144, 48, 480, 96, 168, 168, 336, 60, 576, 64, 384, 192, 216, 192, 840, 76, 240, 224, 720, 84, 768, 88, 504, 480, 288, 96, 1248, 176, 576, 288, 588, 108, 1008, 288, 960, 320
OFFSET
1,2
COMMENTS
For n>1, a(n)>=2*n+2 with equality iff n is prime. - Robert Israel, Feb 28 2019
Sum_{k>=1} 1/a(k) diverges. - Vaclav Kotesovec, Sep 20 2020
LINKS
Eric Weisstein's World of Mathematics, Dedekind Function.
FORMULA
a(n) = Sum_{d|n} psi(d) * psi(n/d).
From Jianing Song, Apr 28 2019: (Start)
Multiplicative with a(p^e) = (e-1)*(p+1)^2*p^(e-2) + 2*(p+1)*p^(e-1).
Dirichlet g.f.: (zeta(s) * zeta(s-1) / zeta(2*s))^2. (End)
Sum_{k=1..n} a(k) ~ 225*(2*log(n) + 4*gamma - 1 + 24*zeta'(2)/Pi^2 - 720*zeta'(4)/Pi^4) * n^2 / (4*Pi^4), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Sep 20 2020
MAPLE
psi:= proc(n) local p; option remember; n*mul(1+1/p, p = numtheory:-factorset(n)): end proc:
f:= proc(n) local d;
add(psi(d)*psi(n/d), d = numtheory:-divisors(n))
end proc:
map(f, [$1..100]); # Robert Israel, Feb 28 2019
MATHEMATICA
psi[n_] := n Times @@ (1+1/FactorInteger[n][[All, 1]]); psi[1] = 1;
a[n_] := Sum[psi[d] psi[n/d], {d, Divisors[n]}];
Array[a, 100] (* Jean-François Alcover, Oct 16 2020 *)
f[p_, e_] := (e-1)*(p+1)^2*p^(e-2) + 2*(p+1)*p^(e-1); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 22 2020 *)
PROG
(PARI) f(n) = n*sumdivmult(n, d, issquarefree(d)/d); \\ A001615
a(n) = sumdiv(n, d, f(d) * f(n/d)); \\ Michel Marcus, Feb 11 2019
CROSSREFS
Cf. A001615.
Sequence in context: A096524 A083595 A064840 * A243932 A242504 A267023
KEYWORD
nonn,mult,easy
AUTHOR
Torlach Rush, Feb 11 2019
STATUS
approved