OFFSET
1,1
COMMENTS
A divisor m of n is twin if the positive values of m - 2 and/or m + 2 also divides n.
A divisor k of n is non-twin if the positive values of neither k - 2 nor k + 2 divide n.
LINKS
Jens Kruse Andersen, Table of n, a(n) for n = 1..10000
EXAMPLE
The divisors of 40 are 1, 2, 4, 5, 8, 10, 20, 40. Of these, 2, 4, 8, 10, are twin divisors and 1, 5, 20, 40 are non-twin divisors. These are the same number of twin divisors (4) as non-twin divisors (4), so 40 is in this sequence.
MATHEMATICA
fQ[n_] := Block[{d = Divisors@ n}, Length@ d == 2Length@ Select[d, MemberQ[d, # + 2] || MemberQ[d, # - 2] &]]; Select[ Range@ 520, fQ] (* Robert G. Wilson v, Jun 22 2014 *)
PROG
(PARI)
isOK(n) = t=sumdiv(n, d, (d>2 && n%(d-2)==0) || (d<=n-2 && n%(d+2)==0)); if(t==numdiv(n)-t, 1, 0)
s=[]; for(n=1, 600, if(isOK(n), s=concat(s, n))); s \\ Colin Barker, Jun 30 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Juri-Stepan Gerasimov, Jun 15 2014
EXTENSIONS
Missing term (168) inserted by Colin Barker, Jun 30 2014
STATUS
approved