|
|
A242504
|
|
Number of compositions of n, where the difference between the number of odd parts and the number of even parts is 6.
|
|
2
|
|
|
1, 0, 6, 8, 21, 64, 101, 288, 576, 1180, 2727, 5280, 11363, 23496, 46981, 98176, 196482, 397644, 806351, 1606488, 3234335, 6456048, 12849330, 25637632, 50835950, 100883304, 199903578, 395067760, 781029504, 1540973568, 3037666097, 5984978112, 11775884581
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
6,3
|
|
COMMENTS
|
With offset 12 number of compositions of n, where the difference between the number of odd parts and the number of even parts is -6.
|
|
LINKS
|
|
|
FORMULA
|
Recurrence (for n>=10): (n-6)*(n+12)*(2*n-1)*(2*n+1)*(n^4 + 2*n^3 - n^2 - 2*n - 1296)*a(n) = -144*(n-7)*n*(n+11)*(2*n-1)*(2*n+3)*a(n-1) + 2*(2*n+1)*(2*n^7 + 13*n^6 + 80*n^5 - 179*n^4 - 3424*n^3 - 6476*n^2 - 69072*n - 31104)*a(n-2) + 2*n*(2*n-1)*(2*n+3)*(2*n^5 + 11*n^4 + 15*n^3 + 67*n^2 - 2465*n + 642)*a(n-3) - (n-4)*(n+2)*(2*n+1)*(2*n+3)*(n^4 + 6*n^3 + 11*n^2 + 6*n - 1296)*a(n-4). - Vaclav Kotesovec, May 20 2014
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|