login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Dirichlet convolution of psi(n) with itself.
2

%I #33 Oct 22 2020 06:36:16

%S 1,6,8,21,12,48,16,60,40,72,24,168,28,96,96,156,36,240,40,252,128,144,

%T 48,480,96,168,168,336,60,576,64,384,192,216,192,840,76,240,224,720,

%U 84,768,88,504,480,288,96,1248,176,576,288,588,108,1008,288,960,320

%N Dirichlet convolution of psi(n) with itself.

%C For n>1, a(n)>=2*n+2 with equality iff n is prime. - _Robert Israel_, Feb 28 2019

%C Sum_{k>=1} 1/a(k) diverges. - _Vaclav Kotesovec_, Sep 20 2020

%H Robert Israel, <a href="/A306379/b306379.txt">Table of n, a(n) for n = 1..10000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DedekindFunction.html">Dedekind Function</a>.

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Dedekind_psi_function">Dedekind psi function</a>.

%F a(n) = Sum_{d|n} psi(d) * psi(n/d).

%F From _Jianing Song_, Apr 28 2019: (Start)

%F Multiplicative with a(p^e) = (e-1)*(p+1)^2*p^(e-2) + 2*(p+1)*p^(e-1).

%F Dirichlet g.f.: (zeta(s) * zeta(s-1) / zeta(2*s))^2. (End)

%F Sum_{k=1..n} a(k) ~ 225*(2*log(n) + 4*gamma - 1 + 24*zeta'(2)/Pi^2 - 720*zeta'(4)/Pi^4) * n^2 / (4*Pi^4), where gamma is the Euler-Mascheroni constant A001620. - _Vaclav Kotesovec_, Sep 20 2020

%p psi:= proc(n) local p; option remember; n*mul(1+1/p, p = numtheory:-factorset(n)): end proc:

%p f:= proc(n) local d;

%p add(psi(d)*psi(n/d),d = numtheory:-divisors(n))

%p end proc:

%p map(f, [$1..100]); # _Robert Israel_, Feb 28 2019

%t psi[n_] := n Times @@ (1+1/FactorInteger[n][[All, 1]]); psi[1] = 1;

%t a[n_] := Sum[psi[d] psi[n/d], {d, Divisors[n]}];

%t Array[a, 100] (* _Jean-François Alcover_, Oct 16 2020 *)

%t f[p_, e_] := (e-1)*(p+1)^2*p^(e-2) + 2*(p+1)*p^(e-1); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* _Amiram Eldar_, Oct 22 2020 *)

%o (PARI) f(n) = n*sumdivmult(n, d, issquarefree(d)/d); \\ A001615

%o a(n) = sumdiv(n, d, f(d) * f(n/d)); \\ _Michel Marcus_, Feb 11 2019

%Y Cf. A001615.

%K nonn,mult,easy

%O 1,2

%A _Torlach Rush_, Feb 11 2019