login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321322
a(n) = Sum_{d|n} mu(n/d)*J_2(d), where J_2() is the Jordan function (A007434).
4
1, 2, 7, 9, 23, 14, 47, 36, 64, 46, 119, 63, 167, 94, 161, 144, 287, 128, 359, 207, 329, 238, 527, 252, 576, 334, 576, 423, 839, 322, 959, 576, 833, 574, 1081, 576, 1367, 718, 1169, 828, 1679, 658, 1847, 1071, 1472, 1054, 2207, 1008, 2304, 1152, 2009, 1503, 2807, 1152, 2737
OFFSET
1,2
COMMENTS
Möbius transform applied twice to squares.
LINKS
N. J. A. Sloane, Transforms.
FORMULA
G.f.: Sum_{k>=1} A007427(k)*x^k*(1 + x^k)/(1 - x^k)^3.
a(n) = Sum_{d|n} mu(n/d)*phi(d)*psi(d), where phi() is the Euler totient function (A000010) and psi() is the Dedekind psi function (A001615).
Multiplicative with a(p^e) = p^2 - 2 if e = 1 and (p^2 - 1)^2 * p^(2*e - 4) otherwise. - Amiram Eldar, Oct 26 2020
From Vaclav Kotesovec, Dec 11 2021: (Start)
Dirichlet g.f.: zeta(s-2) / zeta(s)^2.
Sum_{k=1..n} a(k) ~ n^3 / (3*zeta(3)^2). (End)
a(n) = Sum_{1 <= i, j <= n} mu(gcd(i, j, n)). - Peter Bala, Jan 21 2024
MATHEMATICA
Table[Sum[MoebiusMu[n/d] Sum[MoebiusMu[d/j] j^2, {j, Divisors[d]}], {d, Divisors[n]}], {n, 55}]
nmax = 55; Rest[CoefficientList[Series[Sum[DivisorSum[k, MoebiusMu[#] MoebiusMu[k/#] &] x^k (1 + x^k)/(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x]]
f[p_, e_] := If[e == 1, p^2 - 2, (p^2 - 1)^2*p^(2*e - 4)]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 26 2020 *)
PROG
(PARI) for(n=1, 100, print1(direuler(p=2, n, (1 - X)^2/(1 - p^2*X))[n], ", ")) \\ Vaclav Kotesovec, Dec 11 2021
KEYWORD
nonn,mult,easy
AUTHOR
Ilya Gutkovskiy, Nov 04 2018
STATUS
approved