login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321324
a(n) = (n^2 - c(n)) / 7 + 1 where c(n) = c(-n) = c(n+7) for all n in Z and a(n) = 1 if 0 <= n <=3 except a(1) = 0.
0
1, 0, 1, 1, 2, 4, 5, 8, 9, 12, 14, 17, 21, 24, 29, 32, 37, 41, 46, 52, 57, 64, 69, 76, 82, 89, 97, 104, 113, 120, 129, 137, 146, 156, 165, 176, 185, 196, 206, 217, 229, 240, 253, 264, 277, 289, 302, 316, 329, 344, 357, 372, 386, 401, 417, 432, 449, 464, 481
OFFSET
0,5
COMMENTS
Let t(n) be a strong elliptic divisibility sequence as given in [Kimberling, p. 16] where x = y = z = w := (1 + sqrt(5))/2. Then, t(n) = (-1)^floor(n/7) * w^a(n) except t(7*k) = 0. Since t(n) is a generalized Somos-4 sequence, it satisfies t(n+2)*t(n-2) = w*w*t(n+1)*t(n-1) - w*t(n)*t(n) and t(n+3)*t(n-2) = w*t(n+2)*t(n-1) - w*t(n+1)*t(n) for all n in Z.
FORMULA
G.f.: 1/(1 - x) - x*(1 + x^3)*(1 - 2*x + x^2 - 2*x^3 + x^4)/((1 - x)^2*(1 - x^7)).
a(n) = a(-n) for all n in Z.
a(n) - a(n+1) - a(n+2) + a(n+3) = 0 if n = 7*k or 7*k+4, 2 if n = 7*k+2, else 0.
EXAMPLE
G.f. = 1 + x^2 + x^3 + 2*x^4 + 4*x^5 + 5*x^6 + 8*x^7 + 9*x^8 + 12*x^9 + ...
t(0) = 0, t(1) = 1, t(2) = t(3) = w, t(4) = 1 + w = w^2, t(5) = 2 + 3*w = w^4, t(6) = 3 + 5*w = w^5, t(7) = 0.
MATHEMATICA
a[ n_] := (n^2 - {8, 4, 9, 9, 4, 8, 0}[[Mod[n, 7, 1]]]) / 7 + 1;
LinearRecurrence[{2, -1, 0, 0, 0, 0, 1, -2, 1}, {1, 0, 1, 1, 2, 4, 5, 8, 9}, 60] (* Harvey P. Dale, Jan 18 2023 *)
PROG
(PARI) {a(n) = (n^2 - [0, 8, 4, 9, 9, 4, 8][n%7+1]) / 7 + 1};
CROSSREFS
Sequence in context: A339816 A002541 A239953 * A343013 A259558 A352778
KEYWORD
nonn,easy,changed
AUTHOR
Michael Somos, Nov 04 2018
STATUS
approved