login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A321322 a(n) = Sum_{d|n} mu(n/d)*J_2(d), where J_2() is the Jordan function (A007434). 4

%I

%S 1,2,7,9,23,14,47,36,64,46,119,63,167,94,161,144,287,128,359,207,329,

%T 238,527,252,576,334,576,423,839,322,959,576,833,574,1081,576,1367,

%U 718,1169,828,1679,658,1847,1071,1472,1054,2207,1008,2304,1152,2009,1503,2807,1152,2737

%N a(n) = Sum_{d|n} mu(n/d)*J_2(d), where J_2() is the Jordan function (A007434).

%C Möbius transform applied twice to squares.

%H Amiram Eldar, <a href="/A321322/b321322.txt">Table of n, a(n) for n = 1..10000</a>

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>.

%F G.f.: Sum_{k>=1} A007427(k)*x^k*(1 + x^k)/(1 - x^k)^3.

%F a(n) = Sum_{d|n} mu(n/d)*phi(d)*psi(d), where phi() is the Euler totient function (A000010) and psi() is the Dedekind psi function (A001615).

%F Multiplicative with a(p^e) = p^2 - 2 if e = 1 and (p^2 - 1)^2 * p^(2*e - 4) otherwise. - _Amiram Eldar_, Oct 26 2020

%t Table[Sum[MoebiusMu[n/d] Sum[MoebiusMu[d/j] j^2, {j, Divisors[d]}], {d, Divisors[n]}], {n, 55}]

%t nmax = 55; Rest[CoefficientList[Series[Sum[DivisorSum[k, MoebiusMu[#] MoebiusMu[k/#] &] x^k (1 + x^k)/(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x]]

%t f[p_, e_] := If[e == 1, p^2 - 2, (p^2 - 1)^2*p^(2*e - 4)]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* _Amiram Eldar_, Oct 26 2020 *)

%Y Cf. A000010, A001615, A007427, A007431, A007433, A007434, A008683.

%K nonn,mult,easy

%O 1,2

%A _Ilya Gutkovskiy_, Nov 04 2018

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 11 13:41 EDT 2021. Contains 343791 sequences. (Running on oeis4.)