login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A236773 a(n) = n + floor( n^2/2 + n^3/3 ). 2
0, 1, 6, 16, 33, 59, 96, 145, 210, 292, 393, 515, 660, 829, 1026, 1252, 1509, 1799, 2124, 2485, 2886, 3328, 3813, 4343, 4920, 5545, 6222, 6952, 7737, 8579, 9480, 10441, 11466, 12556, 13713, 14939, 16236, 17605, 19050, 20572, 22173, 23855, 25620, 27469 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

This sequence follows A074148 and A042965, A236771.

The prime terms are 59, 829, 14939, 35759, 93719, 132409, 155219, 290399, 414179, 487463, ... .

If a(k) is prime then k == 1, 5, 7 or 11 (mod 12).

Third differences: 1, 2, 2, 2, 1, 4 repeated (unsigned terms of A181982).

Fourth differences: 1, 0, 0, -1, 3, -3 repeated (see A131193).

LINKS

Bruno Berselli, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (3,-3,1,0,0,1,-3,3,-1).

FORMULA

G.f.: x*(1+3*x+x^2+2*x^3+2*x^4+2*x^5+x^7) / ((1+x)*(1-x+x^2)*(1+x+x^2)*(1-x)^4).

a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +a(n-6) -3*a(n-7) +3*a(n-8) -a(n-9).

Also, for h>=0:

a(6h)   = 6*h*( 12*h^2 + 3*h + 1 ),

a(6h+1) = 72*h^3 + 54*h^2 + 18*h + 1,

a(6h+2) = 6*( 4*h + 1 )*( 3*h^2 + 3*h + 1 ),

a(6h+3) = 2*( 36*h^3 + 63*h^2 + 39*h + 8 ),

a(6h+4) = 3*( 24*h^3 + 54*h^2 + 42*h + 11 ),

a(6h+5) = 72*h^3 + 198*h^2 + 186*h + 59.

MAPLE

seq(n+floor(n^2/2+n^3/3), n=0..43); # Paolo P. Lava, Aug 24 2018

MATHEMATICA

Table[n + Floor[n^2/2 + n^3/3], {n, 0, 50}]

CoefficientList[Series[x (1 + 3 x + x^2 + 2 x^3 + 2 x^4 + 2 x^5 + x^7)/((1 + x) (1 - x + x^2) (1 + x + x^2) (1 - x)^4), {x, 0, 50}], x] (* Vincenzo Librandi, Feb 08 2014 *)

PROG

(MAGMA) [n+Floor(n^2/2+n^3/3): n in [0..50]];

(MAGMA) I:=[0, 1, 6, 16, 33, 59, 96, 145, 210]; [n le 9 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3)+Self(n-6)-3*Self(n-7)+3*Self(n-8)-Self(n-9): n in [1..50]]; // Vincenzo Librandi, Feb 08 2014

(PARI) vector(60, n, n--; n+floor(n^2/2 +n^3/3)) \\ G. C. Greubel, Aug 12 2018

CROSSREFS

Cf. A074148: n+floor(n^2/2).

Cf. A042965: n+floor(1/2+n/3); A236771: n+floor(n/2+n^2/3).

Cf. A236772: floor(sum(i=1..n, n^i/i)).

Sequence in context: A071857 A099399 A118014 * A131820 A266677 A083053

Adjacent sequences:  A236770 A236771 A236772 * A236774 A236775 A236776

KEYWORD

nonn,easy

AUTHOR

Bruno Berselli, Feb 07 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 14 09:41 EST 2019. Contains 329979 sequences. (Running on oeis4.)