login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338094
Number of ways to write 2*n + 1 as x^2 + y^2 + z^2 + w^2 with x + y a positive power of two, where x, y, z, w are nonnegative integers with x <= y and z <= w.
10
1, 1, 1, 2, 2, 2, 2, 3, 2, 3, 1, 2, 3, 3, 1, 5, 3, 2, 3, 5, 2, 5, 3, 4, 4, 4, 3, 6, 4, 3, 4, 5, 3, 7, 2, 4, 6, 5, 2, 6, 3, 3, 4, 7, 3, 6, 4, 4, 5, 5, 2, 7, 2, 2, 3, 5, 4, 6, 4, 4, 4, 6, 3, 9, 4, 5, 6, 5, 3, 7, 2, 5, 7, 7, 4, 10, 7, 6, 7, 9, 3, 8, 3, 4, 7, 7, 5, 10, 6, 5, 6, 10, 6, 11, 5, 5, 9, 5, 3, 12
OFFSET
1,4
COMMENTS
Conjecture: a(n) > 0 for all n > 0. Moreover, any integer m > 1987 not congruent to 0 or 6 modulo 8 can be written as x^2 + y^2 + z^2 + w^2 with x, y, z, w nonnegative integers and x + y a positive power of 4.
We have verified the latter version of the conjecture for m up to 3*10^7.
By Theorem 1.1(ii) of the author's IJNT paper, any positive integer can be written as x^2 + y^2 + z^2 + w^2 with x, y, z, w nonnegative integers and x - y a power of two (including 2^0 = 1).
See also A338121 for related information, and A338095 and A338096 for similar conjectures.
LINKS
Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190. See also arXiv:1604.06723 [math.NT].
Zhi-Wei Sun, Restricted sums of four squares, Int. J. Number Theory 15(2019), 1863-1893. See also arXiv:1701.05868 [math.NT].
Zhi-Wei Sun, Sums of four squares with certain restrictions, arXiv:2010.05775 [math.NT], 2020.
EXAMPLE
a(1) = 1, and 2*1 + 1 = 1^2 + 1^2 + 0^2 + 1^2 with 1 + 1 = 2^1.
a(2) = 1, and 2*2 + 1 = 0^2 + 2^2 + 0^2 + 1^2 with 0 + 2 = 2^1.
a(3) = 1, and 2*3 + 1 = 1^2 + 1^2 + 1^2 + 2^2 with 1 + 1 = 2^1.
a(11) = 1, and 2*11 + 1 = 1^2 + 3^2 + 2^2 + 3^2 with 1 + 3 = 2^2.
a(15) = 1, and 2*15 + 1 = 1^2 + 1^2 + 2^2 + 5^2 with 1 + 1 = 2^1.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
PQ[n_]:=PQ[n]=n>1&&IntegerQ[Log[2, n]];
tab={}; Do[r=0; Do[If[SQ[2n+1-x^2-y^2-z^2]&&PQ[x+y], r=r+1], {x, 0, Sqrt[(2n+1)/2]}, {y, x, Sqrt[2n+1-x^2]}, {z, Boole[x+y==0], Sqrt[(2n+1-x^2-y^2)/2]}];
tab=Append[tab, r], {n, 1, 100}]; Print[tab]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Oct 09 2020
STATUS
approved