The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A338093 Composite numbers which are multiples of the sum of the squares of their prime factors (taken with multiplicity). 1
 16, 27, 256, 540, 756, 1200, 1890, 2940, 3060, 3125, 4050, 4200, 4320, 5460, 6000, 6048, 7920, 8232, 10080, 10164, 10368, 10530, 11232, 11286, 12960, 13104, 13524, 13800, 14000, 14157, 14175, 15708, 15960, 17280, 18200, 18480, 19278, 19683, 19992, 20295, 23814 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS If a(n)=p1*p2*..*pk where p1,p2,..pk primes, then a(n)=m(p1^2+p2^2+..+pk^2) with m a positive integer. For the special case of m=1, a(n) is equal to the sum of the squares of its prime factors. There are only 5 known numbers to have this property: 16, 27 and three more numbers with 123, 163 and 179 digits found by Giorgos Kalogeropoulos (see Rivera links). It is not known if any smaller numbers than those three exist for the case of m=1. From Robert Israel, Oct 16 2020: (Start) Suppose n is in the sequence with n = k*A067666(n). Then n^m is in the sequence if m divides k^m (in particular for m=k). For any prime p, p^(p^j) is in the sequence if j >= 1 (except j>=2 if p=2). (End) LINKS Robert Israel, Table of n, a(n) for n = 1..2000 Carlos Rivera, Puzzle 625. Sum of squares of prime divisors, The Prime Puzzles and Problems Connection. Carlos Rivera, Puzzle 1019. Follow-up to Puzzle 625, The Prime Puzzles and Problems Connection. EXAMPLE 16 = 2*2*2*2 = 1*(2^2 + 2^2 + 2^2 + 2^2). 7920 = 2*2*2*2*3*3*5*11 = 44*(2^2 + 2^2 + 2^2 + 2^2 + 3^2 + 3^2 + 5^2 + 11^2). MAPLE filter:= proc(n) local t; if isprime(n) then return false fi; n mod add(t[1]^2*t[2], t=ifactors(n)[2]) = 0 end proc: select(filter, [\$4..30000]); # Robert Israel, Oct 16 2020 MATHEMATICA Select[Range@20000, Mod[#, Total[Flatten[Table@@@FactorInteger@#]^2]]==0&] PROG (PARI) isok(m) = if (!isprime(m) && (m>1), my(f=factor(m)); (m % sum(k=1, #f~, f[k, 1]^2*f[k, 2])) == 0); \\ Michel Marcus, Oct 11 2020 CROSSREFS Cf. A067666. Sequence in context: A067650 A123963 A073396 * A302553 A300132 A101857 Adjacent sequences: A338090 A338091 A338092 * A338094 A338095 A338096 KEYWORD nonn AUTHOR Giorgos Kalogeropoulos, Oct 09 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 04:44 EST 2023. Contains 367468 sequences. (Running on oeis4.)