login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338093
Composite numbers which are multiples of the sum of the squares of their prime factors (taken with multiplicity).
1
16, 27, 256, 540, 756, 1200, 1890, 2940, 3060, 3125, 4050, 4200, 4320, 5460, 6000, 6048, 7920, 8232, 10080, 10164, 10368, 10530, 11232, 11286, 12960, 13104, 13524, 13800, 14000, 14157, 14175, 15708, 15960, 17280, 18200, 18480, 19278, 19683, 19992, 20295, 23814
OFFSET
1,1
COMMENTS
If a(n)=p1*p2*..*pk where p1,p2,..pk primes, then a(n)=m(p1^2+p2^2+..+pk^2) with m a positive integer.
For the special case of m=1, a(n) is equal to the sum of the squares of its prime factors.
There are only 5 known numbers to have this property:
16, 27 and three more numbers with 123, 163 and 179 digits found by Giorgos Kalogeropoulos (see Rivera links).
It is not known if any smaller numbers than those three exist for the case of m=1.
From Robert Israel, Oct 16 2020: (Start)
Suppose n is in the sequence with n = k*A067666(n). Then n^m is in the sequence if m divides k^m (in particular for m=k).
For any prime p, p^(p^j) is in the sequence if j >= 1 (except j>=2 if p=2). (End)
LINKS
Carlos Rivera, Puzzle 625. Sum of squares of prime divisors, The Prime Puzzles and Problems Connection.
Carlos Rivera, Puzzle 1019. Follow-up to Puzzle 625, The Prime Puzzles and Problems Connection.
EXAMPLE
16 = 2*2*2*2 = 1*(2^2 + 2^2 + 2^2 + 2^2).
7920 = 2*2*2*2*3*3*5*11 = 44*(2^2 + 2^2 + 2^2 + 2^2 + 3^2 + 3^2 + 5^2 + 11^2).
MAPLE
filter:= proc(n) local t;
if isprime(n) then return false fi;
n mod add(t[1]^2*t[2], t=ifactors(n)[2]) = 0
end proc:
select(filter, [$4..30000]); # Robert Israel, Oct 16 2020
MATHEMATICA
Select[Range@20000, Mod[#, Total[Flatten[Table@@@FactorInteger@#]^2]]==0&]
PROG
(PARI) isok(m) = if (!isprime(m) && (m>1), my(f=factor(m)); (m % sum(k=1, #f~, f[k, 1]^2*f[k, 2])) == 0); \\ Michel Marcus, Oct 11 2020
CROSSREFS
Cf. A067666.
Sequence in context: A067650 A123963 A073396 * A302553 A300132 A101857
KEYWORD
nonn
AUTHOR
STATUS
approved