login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123963
Triangle T(n, k) = k^4 - n^4 + 2*k*n*(1 - k^2*n^2), read by rows.
1
0, -1, 0, -16, -27, -120, -81, -128, -485, -1440, -256, -375, -1248, -3607, -8160, -625, -864, -2589, -7264, -16329, -31200, -1296, -1715, -4712, -12843, -28640, -54611, -93240, -2401, -3072, -7845, -20800, -45993, -87456, -149197, -235200, -4096, -5103, -12240, -31615, -69312, -131391, -223888, -352815, -524160
OFFSET
0,4
COMMENTS
A triangular sequence based on the omega(3) Jacobian Elliptic Modular equation.
LINKS
Eric Weisstein's World of Mathematics, Modular Equation
FORMULA
T(n, k) = k^4 - n^4 + 2*k*n*(1 - k^2*n^2).
Sum_{k=0..n} T(n, k) = (-1/15)*binomial(n+1, 2) * (15*n^5 +15*n^4 +24*n^3 -9*n^2 -31*n +1). - G. C. Greubel, Feb 20 2021
EXAMPLE
Triangular sequence:
0;
-1, 0;
-16, -27, -120;
-81, -128, -485, -1440;
-256, -375, -1248, -3607, -8160;
-625, -864, -2589, -7264, -16329, -31200;
-1296, -1715, -4712, -12843, -28640, -54611, -93240;
-2401, -3072, -7845, -20800, -45993, -87456, -149197, -235200;
-4096, -5103, -12240, -31615, -69312, -131391, -223888, -352815, -524160;
MATHEMATICA
T[n_, k_]:= k^4 - n^4 + 2*n*k*(1 - k^2*n^2);
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Feb 20 2021 *)
PROG
(Sage) flatten([[k^4 - n^4 + 2*n*k*(1 - k^2*n^2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 20 2021
(Magma) [k^4 - n^4 + 2*n*k*(1 - k^2*n^2): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 20 2021
CROSSREFS
Sequence in context: A329206 A280935 A067650 * A073396 A338093 A302553
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula, Oct 28 2006
EXTENSIONS
Edited by G. C. Greubel, Feb 20 2021
STATUS
approved