Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Jan 05 2024 12:49:38
%S 0,-1,0,-16,-27,-120,-81,-128,-485,-1440,-256,-375,-1248,-3607,-8160,
%T -625,-864,-2589,-7264,-16329,-31200,-1296,-1715,-4712,-12843,-28640,
%U -54611,-93240,-2401,-3072,-7845,-20800,-45993,-87456,-149197,-235200,-4096,-5103,-12240,-31615,-69312,-131391,-223888,-352815,-524160
%N Triangle T(n, k) = k^4 - n^4 + 2*k*n*(1 - k^2*n^2), read by rows.
%C A triangular sequence based on the omega(3) Jacobian Elliptic Modular equation.
%H G. C. Greubel, <a href="/A123963/b123963.txt">Rows n = 0..100 of the triangle, flattened</a>
%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ModularEquation.html">Modular Equation</a>
%F T(n, k) = k^4 - n^4 + 2*k*n*(1 - k^2*n^2).
%F Sum_{k=0..n} T(n, k) = (-1/15)*binomial(n+1, 2) * (15*n^5 +15*n^4 +24*n^3 -9*n^2 -31*n +1). - _G. C. Greubel_, Feb 20 2021
%e Triangular sequence:
%e 0;
%e -1, 0;
%e -16, -27, -120;
%e -81, -128, -485, -1440;
%e -256, -375, -1248, -3607, -8160;
%e -625, -864, -2589, -7264, -16329, -31200;
%e -1296, -1715, -4712, -12843, -28640, -54611, -93240;
%e -2401, -3072, -7845, -20800, -45993, -87456, -149197, -235200;
%e -4096, -5103, -12240, -31615, -69312, -131391, -223888, -352815, -524160;
%t T[n_, k_]:= k^4 - n^4 + 2*n*k*(1 - k^2*n^2);
%t Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by _G. C. Greubel_, Feb 20 2021 *)
%o (Sage) flatten([[k^4 - n^4 + 2*n*k*(1 - k^2*n^2) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Feb 20 2021
%o (Magma) [k^4 - n^4 + 2*n*k*(1 - k^2*n^2): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Feb 20 2021
%K sign,tabl
%O 0,4
%A _Roger L. Bagula_, Oct 28 2006
%E Edited by _G. C. Greubel_, Feb 20 2021