login
A280935
Numbers k such that k = rad(k) * sopfr(k), where rad(k) is the squarefree kernel of k and sopfr(k) the integer log of k.
1
16, 27, 72, 540, 2106, 2625, 3264, 5445, 5824, 5880, 10647, 13475, 15210, 15500, 18048, 22800, 28611, 37752, 38528, 39445, 42237, 47334, 61568, 64141, 68952, 69575, 70308, 71136, 71478, 72912, 74115, 75392, 79000, 80937, 83712, 89775, 100156, 100359, 113680, 114660
OFFSET
1,1
LINKS
EXAMPLE
Prime factors of 2106 are 2, 3, 3, 3, 3, 13. Then rad(2106) = 2 * 3 * 13 = 78, sopfr(2106) = 2 + 3 + 3 + 3 + 3 + 13 = 27 and 78 * 27 = 2106.
MAPLE
with(numtheory): P:=proc(q) local a, k, n; for n from 1 to q do a:=ifactors(n)[2];
if n=mul(a[k][1], k=1..nops(a))*add(a[k][1]*a[k][2], k=1..nops(a)) then print(n);
fi; od; end: P(10^9);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paolo P. Lava, Jan 11 2017
STATUS
approved