login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A280937
Expansion of Product_{k>=1} ((1 - x^(7*(2*k-1))) * (1 - x^(7*k)) / (1 - x^k)).
6
1, 1, 2, 3, 5, 7, 11, 13, 20, 26, 36, 46, 63, 79, 105, 132, 171, 213, 273, 336, 425, 522, 650, 793, 981, 1188, 1456, 1756, 2136, 2563, 3098, 3698, 4443, 5285, 6312, 7477, 8891, 10489, 12415, 14599, 17206, 20165, 23678, 27659, 32363, 37698, 43958, 51058, 59361
OFFSET
0,3
REFERENCES
D. M. Bressoud, Analytic and combinatorial generalizations of the Rogers-Ramanujan identities, Mem. Amer. Math. Soc. 24 (1980), no. 227, 54 pp.
LINKS
Andrew Sills, Rademacher-Type Formulas for Restricted Partition and Overpartition Functions, Ramanujan Journal, 23 (1-3): 253-264, 2010.
Wikipedia, Bailey pair.
FORMULA
a(n) ~ 2*Pi * BesselI(1, Pi/6 * sqrt(11*(24*n-1)/14)) / (7*sqrt((24*n-1)/11)).
a(n) ~ exp(Pi * sqrt(11*n/21)) * 11^(1/4) / (2 * 3^(1/4) * 7^(3/4) * n^(3/4)) * (1 -(3*sqrt(21)/(8*Pi*sqrt(11)) + Pi*sqrt(11)/(48*sqrt(21)))/sqrt(n) + (11*Pi^2/96768 - 315/(1408*Pi^2) + 5/128)/n).
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[(1-x^(7*(2*k-1))) * (1-x^(7*k)) / (1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Jan 11 2017
STATUS
approved