login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108962
Number of partitions that are "3-close" to being self-conjugate.
6
1, 1, 2, 3, 5, 5, 9, 11, 16, 20, 28, 34, 47, 57, 75, 92, 119, 143, 183, 220, 277, 332, 412, 491, 605, 718, 874, 1036, 1252, 1475, 1772, 2082, 2483, 2909, 3450, 4027, 4755, 5533, 6499, 7545, 8826, 10213, 11904, 13741, 15955, 18372, 21262, 24422
OFFSET
0,3
COMMENTS
Let (a1,a2,a3,...ad:b1,b2,b3,...bd) be the Frobenius symbol for a partition pi of n. Then pi is m-close to being self-conjugate if for all k, |ak-bk| <= m.
REFERENCES
D. M. Bressoud, Analytic and combinatorial generalizations of the Rogers-Ramanujan identities, Mem. Amer. Math. Soc. 24 (1980), no. 227, 54 pp.
LINKS
D. M. Bressoud, Extension of the partition sieve, J. Number Theory 12 no. 1 (1980), 87-100.
Andrew Sills, Rademacher-Type Formulas for Restricted Partition and Overpartition Functions, Ramanujan Journal, 23 (1-3): 253-264, 2010.
Wikipedia, Bailey pair
FORMULA
Define the Dedekind eta function = q^1/24. Product(1-q^k), k >=1. Then the number of m-close partitions is q^(1/24).(m+2)^2/(1.(2m+4)) (where m denotes eta(q^m)).
From Vaclav Kotesovec, Nov 13 2016, extended Jan 11 2017: (Start)
a(n, m) ~ exp(Pi*sqrt((2*m+1)*n/(3*(m+2)))) * (2*m+1)^(1/4) / (2*3^(1/4)*(m+2)^(3/4)*n^(3/4)).
For m=3, a(n) ~ 7^(1/4) * exp(sqrt(7*n/15)*Pi) / (2*3^(1/4)*5^(3/4)*n^(3/4)) * (1 -(3*sqrt(15)/(8*Pi*sqrt(7)) + Pi*sqrt(7)/(48*sqrt(15)))/sqrt(n) + (7*Pi^2/69120 - 225/(896*Pi^2) + 5/128)/n).
(End)
a(n) ~ 2*Pi * BesselI(1, Pi/6 * sqrt((24*n-1)*7/10)) / (5*sqrt((24*n-1)/7)). - Vaclav Kotesovec, Jan 11 2017
EXAMPLE
1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 5*x^5 + 9*x^6 + 11*x^7 + 16*x^8 + 20*x^9 + 28*x^10 + ...
1/q + q^23 + 2*q^47 + 3*q^71 + 5*q^95 + 5*q^119 + 9*q^143 + 11*q^167 + 16*q^191 + ...
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[(1 - x^(5*k))^2 / ((1 - x^k) * (1 - x^(10*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 13 2016 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^5 + A)^2 / (eta(x + A) * eta(x^10 + A)), n))} /* Michael Somos, Jun 08 2012 */
CROSSREFS
Cf. A000700 for m=0 (self-conjugate), A070047 for m=1, A108961 for m=2, A271661 for m=4, A280937 for m=5, A280938 for m=6.
Sequence in context: A139127 A239143 A131319 * A091608 A317081 A183562
KEYWORD
nonn
AUTHOR
John McKay (mckay(AT)cs.concordia.ca), Jul 22 2005
STATUS
approved