login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions that are "3-close" to being self-conjugate.
6

%I #23 Apr 18 2021 02:36:18

%S 1,1,2,3,5,5,9,11,16,20,28,34,47,57,75,92,119,143,183,220,277,332,412,

%T 491,605,718,874,1036,1252,1475,1772,2082,2483,2909,3450,4027,4755,

%U 5533,6499,7545,8826,10213,11904,13741,15955,18372,21262,24422

%N Number of partitions that are "3-close" to being self-conjugate.

%C Let (a1,a2,a3,...ad:b1,b2,b3,...bd) be the Frobenius symbol for a partition pi of n. Then pi is m-close to being self-conjugate if for all k, |ak-bk| <= m.

%D D. M. Bressoud, Analytic and combinatorial generalizations of the Rogers-Ramanujan identities, Mem. Amer. Math. Soc. 24 (1980), no. 227, 54 pp.

%H Vaclav Kotesovec, <a href="/A108962/b108962.txt">Table of n, a(n) for n = 0..1000</a>

%H D. M. Bressoud, <a href="https://doi.org/10.1016/0022-314X(80)90077-3">Extension of the partition sieve</a>, J. Number Theory 12 no. 1 (1980), 87-100.

%H Andrew Sills, <a href="https://works.bepress.com/andrew_sills/40/">Rademacher-Type Formulas for Restricted Partition and Overpartition Functions</a>, Ramanujan Journal, 23 (1-3): 253-264, 2010.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Bailey_pair">Bailey pair</a>

%F Define the Dedekind eta function = q^1/24. Product(1-q^k), k >=1. Then the number of m-close partitions is q^(1/24).(m+2)^2/(1.(2m+4)) (where m denotes eta(q^m)).

%F From _Vaclav Kotesovec_, Nov 13 2016, extended Jan 11 2017: (Start)

%F a(n, m) ~ exp(Pi*sqrt((2*m+1)*n/(3*(m+2)))) * (2*m+1)^(1/4) / (2*3^(1/4)*(m+2)^(3/4)*n^(3/4)).

%F For m=3, a(n) ~ 7^(1/4) * exp(sqrt(7*n/15)*Pi) / (2*3^(1/4)*5^(3/4)*n^(3/4)) * (1 -(3*sqrt(15)/(8*Pi*sqrt(7)) + Pi*sqrt(7)/(48*sqrt(15)))/sqrt(n) + (7*Pi^2/69120 - 225/(896*Pi^2) + 5/128)/n).

%F (End)

%F a(n) ~ 2*Pi * BesselI(1, Pi/6 * sqrt((24*n-1)*7/10)) / (5*sqrt((24*n-1)/7)). - _Vaclav Kotesovec_, Jan 11 2017

%e 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 5*x^5 + 9*x^6 + 11*x^7 + 16*x^8 + 20*x^9 + 28*x^10 + ...

%e 1/q + q^23 + 2*q^47 + 3*q^71 + 5*q^95 + 5*q^119 + 9*q^143 + 11*q^167 + 16*q^191 + ...

%t nmax = 50; CoefficientList[Series[Product[(1 - x^(5*k))^2 / ((1 - x^k) * (1 - x^(10*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Nov 13 2016 *)

%o (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^5 + A)^2 / (eta(x + A) * eta(x^10 + A)), n))} /* _Michael Somos_, Jun 08 2012 */

%Y Cf. A000700 for m=0 (self-conjugate), A070047 for m=1, A108961 for m=2, A271661 for m=4, A280937 for m=5, A280938 for m=6.

%K nonn

%O 0,3

%A John McKay (mckay(AT)cs.concordia.ca), Jul 22 2005