login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271661
Expansion of phi(-x^6) / f(-x) in powers of x where phi(), f() are Ramanujan theta functions.
6
1, 1, 2, 3, 5, 7, 9, 13, 18, 24, 32, 42, 55, 71, 91, 116, 147, 185, 231, 288, 357, 440, 540, 661, 807, 980, 1186, 1432, 1724, 2069, 2476, 2956, 3521, 4183, 4958, 5865, 6923, 8155, 9587, 11251, 13180, 15411, 17990, 20967, 24399, 28348, 32886, 38098, 44075
OFFSET
0,3
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Partitions which are "4-close" to being self-conjugate; see A108961 for the definition. - Arvind Ayyer, Apr 13 2021
REFERENCES
D. M. Bressoud, Analytic and combinatorial generalizations of the Rogers-Ramanujan identities, Mem. Amer. Math. Soc. 24 (1980), no. 227, 54 pp.
Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988. See page 6 equation 2.
LINKS
D. M. Bressoud, Extension of the partition sieve, J. Number Theory 12 no. 1 (1980), 87-100.
Andrew Sills, Rademacher-Type Formulas for Restricted Partition and Overpartition Functions, Ramanujan Journal, 23 (1-3): 253-264, 2010.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Wikipedia, Bailey pair
FORMULA
Expansion of f(x^2, x^4) / psi(-x) in powers of x where psi(), f(, ) are Ramanujan theta functions.
Expansion of q^(1/24) * eta(q^6)^2 / (eta(q) * eta(q^12)) in powers of q.
Euler transform of period 12 sequence [ 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 0, ...].
G.f.: Sum_{k>=0} x^(k^2) (-x, x^2)_k / (x)_{2*k}.
a(n) ~ Pi * BesselI(1, Pi*sqrt(24*n-1)/(4*sqrt(3))) / sqrt(24*n-1) ~ exp(sqrt(n/2)*Pi) / (2^(7/4)*sqrt(3)*n^(3/4)) * (1 - (3/(4*Pi) + Pi/48)/sqrt(2*n) + (5/128 - 15/(64*Pi^2) + Pi^2/9216)/n). - Vaclav Kotesovec, Apr 18 2016, extended Jan 10 2017
EXAMPLE
G.f. = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 9*x^6 + 13*x^7 + 18*x^8 + ...
G.f. = q^-1 + q^23 + 2*q^47 + 3*q^71 + 5*q^95 + 7*q^119 + 9*q^143 + 13*q^167 + ..
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x^6] / QPochhammer[ x], {x, 0, n}];
a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ x^k^2 QPochhammer[ -x, x^2, k] / QPochhammer[ x, x, 2 k] // FunctionExpand, {k, 0, Sqrt@n}], {x, 0, n}]];
nmax = 50; CoefficientList[Series[Product[(1-x^(6*k)) / ((1-x^k) * (1+x^(6*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 18 2016 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^6 + A)^2 / (eta(x + A) * eta(x^12 + A)), n))};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Apr 11 2016
STATUS
approved