login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A280939
Expansion of e.g.f.: 2*sinh(x/2) / sqrt(2 - exp(x)).
1
1, 1, 4, 19, 121, 946, 8779, 94249, 1148746, 15667741, 236396029, 3909054304, 70297156021, 1365847397461, 28512838809004, 636437585232559, 15125744356058821, 381337518656892106, 10164860714961807079, 285635253778131491389, 8438962752941736017146, 261512261403795336646801, 8481542634943973943517129, 287325556922319462615912544, 10148442521179099638781764121
OFFSET
1,3
LINKS
FORMULA
a(n) ~ n^n / (sqrt(2) * log(2)^(n + 1/2) * exp(n)). - Vaclav Kotesovec, Jan 11 2017
EXAMPLE
E.g.f.: A(x) = x + x^2/2! + 4*x^3/3! + 19*x^4/4! + 121*x^5/5! + 946*x^6/6! + 8779*x^7/7! + 94249*x^8/8! + 1148746*x^9/9! + 15667741*x^10/10! + 236396029*x^11/11! + 3909054304*x^12/12! + ...
MAPLE
seq(coeff(series(factorial(n)*(2*sinh(x/2)/sqrt(2-exp(x))), x, n+1), x, n), n = 1 .. 25); # Muniru A Asiru, Oct 11 2018
MATHEMATICA
Rest[With[{nmax = 50}, CoefficientList[Series[2*Sinh[x/2]/Sqrt[2 - Exp[x]], {x, 0, nmax}], x]*Range[0, nmax]!]] (* G. C. Greubel, Oct 10 2018 *)
PROG
(PARI) {a(n) = my(X=x+x*O(x^n)); n!*polcoeff( 2*sinh(X/2) / sqrt(2 - exp(X)), n)}
for(n=1, 20, print1(a(n), ", "))
(Magma) m:=50; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(2*Sinh(x/2)/Sqrt(2 - Exp(x)))); [Factorial(n)*b[n]: n in [1..m-1]]; // G. C. Greubel, Oct 10 2018
CROSSREFS
Sequence in context: A354458 A361532 A094822 * A121125 A361240 A377967
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 11 2017
STATUS
approved