login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A280941
Least integer k such that prime(k+1) - prime(k) = 2 and prime(k+2) - prime(k+1) = 2n, or 0 if no such k exists.
0
2, 3, 10, 0, 33, 45, 0, 294, 98, 0, 296, 262, 0, 428, 984, 0, 1456, 3086, 0, 2343, 1878, 0, 14938, 8422, 0, 2809, 4259, 0, 7809, 13819, 0, 51036, 45506, 0, 15782, 30764, 0, 57764, 24553, 0, 23282, 51942, 0, 44902, 34214, 0, 1242641, 95929, 0, 66761
OFFSET
1,1
COMMENTS
Or least integer k such that prime(k+2) - prime(k+1) = 2n where prime(k) is in A001359 (lesser of twin primes).
The corresponding prime(k) are 3, 5, 29, 137, 197, 1931, 521, 1949, 1667, 2969, 7757, 12161, 28349, 20807, ...
a(n) is a subsequence of A029707(n) or subsequence of A107770(n) - 1.
a(n) = 0 for n == 1 mod 3 for n > 1.
Proof: prime(k+1) - prime(k) = 2 => prime(k+1) == 1 mod 6 and prime(k) == -1 mod 6. If prime(k+2) - prime(k+1) = 2n, then prime(k+2) = 2(n+1) + prime(k). Combining n == 1 mod 3 and prime(k) == -1 mod 6 we obtain prime(k+2) == 3 mod 6, a contradiction because prime(k+2) == +-1 mod 6. Hence, a(n) = 0.
EXAMPLE
a(3) = 10 because prime(11) - prime(10) = 31 - 29 = 2 and prime(12) - prime(11) = 37 - 31 = 6 = 2*3.
a(11) = 296 because prime(297) - prime(296) = 1951 - 1949 = 2 and prime(298) - prime(297) = 1973 - 1951 = 22 = 2*11.
MAPLE
nn:=50:m:=10^5:
for n from 1 to 50 do:
ii:=0:
for k from 1 to m while(ii=0) do:
p1:=ithprime(k):p2:=ithprime(k+1):p3:=ithprime(k+2):
if p2-p1 = 2 and p3-p2 = 2*n
then
ii:=1:printf(`%d %d \n`, n, k):
else
fi:
od:
if ii=0 then printf(`%d %d \n`, n, 0):
else
fi:
od:
MATHEMATICA
Table[If[And[n > 1, Mod[n, 3] == 1], 0, k = 1; While[Nand[# - Prime@ k == 2, Prime[k + 2] - # == 2 n] &@ Prime[k + 1], k++]; k], {n, 40}] (* Michael De Vlieger, Jan 14 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Jan 11 2017
STATUS
approved