login
A338119
Positive integers not congruent to 0 or 2 modulo 8 which cannot be written as x^2 + y^2 + z^2 + w^2 with x + y + 2*z a positive power of 4, where x, y, z, w are nonnegative integers.
8
1, 15, 22, 23, 27, 31, 36, 37, 38, 183, 193, 223, 237, 254, 279, 283, 285, 310, 311, 325, 331, 343, 349, 358, 359, 379, 381, 389, 399, 421, 429, 430, 436, 447, 463, 465, 471, 475, 479, 483, 503, 511, 513, 516, 523, 541, 547, 553, 555, 556, 557, 559, 563, 565, 566, 598, 599, 603, 604, 611, 625, 631, 639, 645, 647, 649, 651
OFFSET
1,2
COMMENTS
Conjecture: The sequence has exactly 124 terms as listed in the b-file with 10839 the last one.
See also the related sequence A338095.
LINKS
Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190. See also arXiv:1604.06723 [math.NT].
Zhi-Wei Sun, Restricted sums of four squares, Int. J. Number Theory 15(2019), 1863-1893. See also arXiv:1701.05868 [math.NT].
Zhi-Wei Sun, Sums of four squares with certain restrictions, arXiv:2010.05775 [math.NT], 2020.
EXAMPLE
a(1) = 1, for, if x, y, z, w are nonnegative integers with x^2 + y^2 + z^2 + w^2 = 1 then x + y + 2*z < 4.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
FQ[n_]:=FQ[n]=n>1&&IntegerQ[Log[4, n]];
tab={}; Do[If[Mod[m, 8]==0||Mod[m, 8]==2, Goto[aa]]; Do[If[SQ[m-x^2-y^2-z^2]&&FQ[x+y+2z], Goto[aa]], {x, 0, Sqrt[m/2]}, {y, x, Sqrt[m-x^2]}, {z, 0, Sqrt[m-x^2-y^2]}]; tab=Append[tab, m]; Label[aa], {m, 1, 660}]; tab
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Oct 10 2020
STATUS
approved